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I. Introduction

During the period April 15, 1992 to April 14, 1993, research carried out by the
Nanostructures Group in the Department of Electrical Engineering at Notre Dame was
concerned with a variety of quantum transport in mesoscopic structures. This research was
funded by the Air Force Office of Scientific Research under Grant No. AFOSR-91-021 1.
The major issues examined included quantum transport in high magnetic fields and
modulated channels, Coulomb-coupled quantum dot systems, transmission resonances
and zeroes in resonant transport, self-consistent Hartree calctilations of transport, lateral
quantum wires an pn-junction formation, quantum magnetotransport in disordered
systems, magnetoelectric states in quantum wires, anomalous magnetoresistance,
electromigration, collision retardation and phonon effects in hot-electron transport, spin-
polarized single electronics, single-particle lifetimes in quasi-ID structures, quantum
transport experiments in metals, the mesoscopic photovoltaic effect, and new techniques
for fabricating quantum structures in semiconductors.

The research supported by this grant resulted in 33 journal papers, 12 conference
presentations, and 4 research seminars. The research contributed to the granting of 2 M.S.
degrees, I Ph.D. degree, and supports continuing M.S. and Ph.D. thesis research.
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I II. Research Description

I Quantum Transport in Magnetic Fields

Investigators: Craig S. Lent

I We have been investigating ballistic electron transport in quantum channels with an
applied magnetic field. The magnetic field is in the direction perpendicular to the plane of
the two-dimensional electron gas from which the channels are formed. Electrons in such
geometries form magnetic edge states, which carry current, and circulating Landau levels
which do not. We solve the Schrodinger equation with the magnetic field included through
Sa vector potential. The precise eigenstates of the system, and the current density
distribution can the be calculated. We have extended the Quantum Transmitting Boundary
Method, an adaptation of the Finite Element Method for current-carrying quantum states,3 to include the effect of the applied magnetic field.

We have used this technique to examine transport in quantum channels with a periodic
I modulation in the channel width. This investigation yielded two surprising results: 1) that,

in the high-field regime, the electron in an infinite modulated channel propagates as
though it were completely free, but with a renormalized effective mass, and 2) that the
quantization of conductance characteristic of short ballistic constrictions is recovered for
longer (but finite) periodically-modulated channels. This latter effect has lead us to make
new predictions concerning the quenching of integer quantum Hall effect plateaus in such
structures.

Resulting Publications and Presentations:

Manhua Leng and Craig S. Lent, "Magnetic Edge States in a Quantum Channel with a
Periodic Array of Antidots", Superlattices and Microstructures 11, 351 (1992).

Manhua Lung and Craig S. Lent, "Recovery of Quantized Ballistic Conductance in a
Periodically Modulated Channel," submitted to Physical Review Letters.

Manhua Leng and Craig S. Lent, "The Quantum Transmitting Boundary Method in an
Applied Magnetic Field," to be submitted to Journal of Applied Physics.

Coulomb-coupled Quantum Dot Systems

I Investigators: Craig S. Lent, Wolfgang Porod, and Gary Bernstein

We analyze the interaction between quantum dot cells which may be potential building
blocks for quantum cellular automata architectures. Each cell holds a few electrons and
interacts Coulombically with nearby cells. In particularly interesting cell geometries, the
charge density tends to align along one of two cell axes. Thus, we can define a cel!
"polarization" which might be used to encode binary information. The polarization of a
cell is affected in a very nonlinear manner by the polarization of its neighbors. We

I quantify this interaction by calculating a cell-cell response function which makes clear the
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I non-linear bistability in the charge density of the coupled cell system. Effects of non-zero
temperature on the response of a model cell have been investigated by taking quantum
averages over the canonical ensemble. We have also examined the effects of multiple
neighbors on a cell and developed programmable logic gate structures based on these
ideas.

Ii The underlying formalism we have developed involves expressing the electron-electron
interaction in the form of a second-quantized Hamiltonian, and solving the resulting
Schrodinger equation directly in the basis of many-electron states. This approach, which is

[I numerically tractable for few-electron problems, is one we hope to generalize to related
transport problems. It seems ideal for attacking certain problems in the quantum theory of

I dissipation.

Resulting Publications and Presentations:

I C. S. Lent, P. Douglas Tougaw, and Wolfgang Porod, "Bistable Saturation in Coupled
Quantum Dots for Quantum Cellular Automata," Appl. Phys. Lett., 62, 714 (1993).

i C. S. Lent, P. Douglas Tougaw, Wolfgang Porod and Gary H. Bernstein, "Quantum
Cellular Automata," to appear in Nanotechnology 4, (1993).

i P. Douglas Tougaw and C.S. Lent, "Lines of Interacting Quantum-dot Cells: a Binary
Wire," submitted to Journal of Applied Physics.

I C. S. Lent, P. Douglas Tougaw, and Wolfgang Porod, "Bistable Saturation in Coupled
Quantum-dot Cells," submitted to Journal of Applied Physics.

i C. S. Lent, P. Douglas Tougaw, and Wolfgang Porod, "A Bistable Quantum Cell for
Cellular Automata," Proceedings of the International Workshop on Computational

i Electronics, University of Illinois at Urbana-Champaign, May 1992.

C.S. Lent, "Quantum Cellular Automata," seminar at the Department of Electrical
Engineering, University of Illinois at Urbana, October 6, 1992.

C. S. Lent, P. D. Tougaw, W. Porod, and G. H. Bernstein, "Quantum Cellular Automata,"
presented at the "International Symposium on New Phenomena in Mesoscopic
Structures," in Hawaii, December, 1992.

W. Porod, "Dissipation in Computation," seminar at the School of Electrical Engineering,
Purdue University, October 1992.

C.S. Lent, "Quantum Cellular Automata," seminar at the Department of Electrical
Engineering, Purdue University, April 14, 1993.

Transmission Resonances and Zeros in Quantum Waveguides with Resonantly-
Coupled Cavities

Investigators: Wolfgang Porod and Craig S. Lent

6
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We have studied transmission in quantum waveguides in the presence of resonant cavities.
This work was inspired by our previous modeling of the conductance of resonantly-
coupled quantum wire systems. We expected to find qualitatively the same phenomena as
in the much studied case of double-barrier resonant tunneling, which can be viewed as
transmission in a waveguide which contains both barriers. Our investigation showed
surprising new behavior of the transmission amplitude for the case of the waveguides with
the attached resonators: (i) The transmission probability possesses zeros, which are a
consequence of unitarity. (ii) Each quasi-bound resonator state is represented by a zero-
pole pair in the complex-energy plane. (iii) The close proximity of a zero and a pole
results in very sharp resonance/antiresonance features of the transmission probability. (iv)
The location of the transmission peaks does not give the location of the quasi-bound3 states, like for double-barrier resonant tunneling.

In current work, we study techniques to infer from the transmission probability on the
real-energy axis the positions of zero-pole pairs in the complex-energy plane. This will
allow us to obtain the lifetime of the corresponding quasi-bound states. For quantum
waveguides, such a theory will be the analogue of the Breit-Wigner formulation of
transmission resonances for double-barrier resonant tunneling. We also refine techniques
to obtain the exact locations of zeros and poles from eigenvalue problems.

Resulting Publications and Presentations:

Wolfgang Porod, Zhi-an Shao, and Craig S. Lent, "Transmission Resonances and Zeros in
Quantum Waveguides with Resonantly-Coupled Cavities," Applied Physics Letters 61,
1350 - 1352 (1992).

Wolfgang Porod, Zhi-an Shao, and Craig S. Lent, "Transmission Resonances and Zeros in
Quantum Waveguides with Resonantly-Coupled Cavities," seminar at the Beckman
Institute, University of Illinois, Urbana, Illinois, April 1992.

I Zhi-an Shao, Wolfgang Porod, and Craig S. Lent, "A Numerical Study of Transmission
Resonances and Zeros in Quantum Waveguide Structures," Proceedings of the
International Workshop on Computational Electronics, pp. 253 -256; presented at the
International Workshop on Computational Electronics, Urbana, Illinois, May 1992.

Zhi-an Shao, Wolfgang Porod, and Craig S. Lent, "Transmission Resonances and Zeros in
Quantum Waveguide Systems with Attached Resonators," submitted to Physical Review
B.

Lateral P-N Junctions and Quantum Wires Formed by Quasi Two-dimensional

Electron and Hole Systems at Corrugated GaAs/AIGaAs Interfaces

Investigators: Wolfgang Porod

SWe have proposed a novel system for the design of quantum wires. Using the surface
orientation dependent amphoteric nature of Si-doping, we have demonstrated in our
numerical models the existence of lateral p-n junctions and p-n-p quantum wire structures

7



at corrugated GaAs/AIGaAs interfaces. Among the novel properties of such structures are
the coexistence of quasi two-dimensional electron and hole statcs next to a quasi one-

i dimensional electron or hole system.

Si acts as an amphoteric dopant depending on substrate orientation during MBE growth of
GaAs and AlGaAs, which may be utilized to achieve different doping behavior on different
facets of a corrugated GaAs/AIGaAs interface. In particular, growth on 1100) surfaces
invariably leads to n-type doping, while p-type behavior has been reported for Ga-
terminated I 111 )A surfaces. For a model geometry, we determine the potential landscape
and the electron and hole charge densities within a semi-classical Thomas-Fermi screening
model, and then solve the two dimensional Schridinger equation using finite elements for
the quantized electron and hole states at the heterointerfaces. At V-grooves etched into a
semi-insulating GaAs substrate, a p-n junction forms at the intersection of (100) and (111)
planes if the doping in the overlayer exceeds 5 xlO 17 cm-3. We have demonstrated the
existence of a quantum wire which may form at the bottom of the V-groove. We find that a
quantum wire is to be expected in this p-n-p structure for a length of the n-type region on
the order of 100 nm and a Si-doping density of I x10 18 cm-3.

I Resulting Publications and Presentations:

Henry K. Harbury, Wolfgang Porod, and Stephen M. Goodnick, "Lateral p-n junctionsbetween quasi two-dimensional electron and hole systems at corrugated GaAs/AIGaAs
interfaces," Journal of Vacuum Science and Technology B 10, 2051 -- 2055 (1992).

Wolfgang Porod, Henry K. Harbury, and Stephen M. Goodnick, "Lateral p-n junctions and
quantum wires formed by quasi two-dimensional electron and hole systems at corrugated
GaAs/AIGaAs interfaces," Applied Physics Letters 61, 1823 -- 1825 (1992).

Henry K. Harbury, Wolfgang Porod, and Stephen M. Goodnick, "A Novel Quantum Wire
Formed by Lateral p-n-p Junctions Between Quasi-Two-Dimensional Electron and Hole
Systems at Corrugated GaAs/AIGaAs Interfaces," Journal of Applied Physics 73, 1509 --
15200(993).

I Henry K. Harbury, Wolfgang Porod, and Stephen M. Goodnick, "A Numerical Study of
Lateral p-n Junctions between Quasi Two-Dimensional Electron and Hole Systems at
Corrugated GaAs/AIGaAs Interfaces," Proceedings of the International Workshop on
Computational Electronics, pp. 249 -- 251; presented at the International Workshop on
Computational Electronics, Urbana, Illinois, May 1992.

I Henry K. Harbury, Wolfgang Porod, and Stephen M. Goodnick, "Novel Quantum Wire
Formed by Lateral p-n-p Junctions Between Quasi-Two-Dimensional Electron and Hole
Systems at Corrugated GaAs/AIGaAs Interfaces," presented at the International Workshop
on Quantum Structures, Santa Barbara, California, March 1993.

I Carrier Dynamics in Quantum Wires

Investigators: Wolfgang Porod

I



I Using the Monte Carlo technique, we have investigated the thermalization of carriers
following a laser pulse excitation. Realistic quantum wire structures are investigated with
multiple electronic subbands (on the order of 20). Our simulations include standard polar-
optical phonon rates, and an improved technique to account for carrier-carrier scattering.
We find that the reduced phase space in these quasi-one-dimensional systems leads to
reduced carrier cooling when compared to bulk samples. These findings are in agreement
with recent experiments.

Resulting Publications and Presentations:

L. Rota, F. Rossi, S. M. Goodnick, P. Lugli, E. Molinari, and W. Porod, "Reduced carrier
cooling and thermalization in semiconductor quantum wires," Physical Review B 47, 1632
-- 1635 (1993).

L. Rota, F. Rossi, R Lugli, E. Molinari, S. M. Goodnick, and W. Porod, "Monte Carlo
I Simulation of a 'True' Quantum Wire," presented at the 1992 Symposium on Compound

Semiconductor Physics and Devices, of SPIE -- The International Society of Optical
Engineering, Somerset, New Jersey, March 1992.

Local Field Effects and Electromigration in Mesoscopic Structures

Investigators: Molfgang Porod and Craig S. Lent

In this ongoing effort, we study the effect of space charges on the current - voltage
characteristics of two-dimensional mesoscopic structures. In particular, we focus on the
microscopic potential and current variations in the vicinity of scattering centers. The
resulting non-uniform carrier distribution gives rise to local-field effects and the so-called
residual resistivity dipole. These phenomena are thought to be responsible for the driving
force in electromigration, and we believe that the study of such mesoscopic systems may
shed light on an understanding of this important effect.

The (non-uniform) electronic density along the channel influences the electronic
wavefunctions through its space charge potential. The Schrddinger and Poisson equations
are solved self-consistently within the Hartree approximation. Like in our past studies, the
finite element method is used for the discretization of the Schrbdinger and Poisson
equations. The Hartree term is obtained by numerically integrating the contributions from
the electronic charge density along the channel. An iterative procedure is then employed
until self consistency in the wavefunctions and in the space charge potential is achieved.

I Resulting Publications and Presentations.

Henry K. Harbury, Wolfgang Porod, and Craig S. Lent, "Field Effects in Self-consistent
Transport Calculations for Narrow Split-gate Structures", Superlattices and
Microstructures 11, 189 - 193 (1992).

1 Spatial Distributions of Transport Variables in Quantum Transport

I Investigators. Supriyo Bandyopadhyay

I 9
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We have calculated the spatial distributions of current, carrier concentration, electrostatic
and chemical potential. residual resistivity dipole fields, etc. around localized elastic
scatterers in phase coherent quantum transport. We have observed many interesting
features such as the collapse of all current carrying states into "edge states" in the quantum
Hall regime, the formation of magnetic bound states pinned by an impurity and the
associated current patterns around the impurity, the destruction of these states by a
magnetic field, the destruction of quantum Hall effect by magnetic bound states, the
vanishing of the longitudinal resistance and precise quantization of the Hall resistance in
the quantum Hall regime, current patterns around attractive and repulsive scatterers and
their dependence on a magnetic field, the difference between majority and minority carrier
transport and mobility in the quantum regime, current vortices forming as result of
quantum interference between scatterers, dependence of the sign of magnetoresistancc in a
disordered structure on the impurity configuration, etc. All of these have revealed new
physics and have helped to visualize many other physical phenomena. Our most important
contribution is that we have demonstrated the Quantum Hall effect from a microscopic
approach (directly from the S( ar6dinger equation) in the phase coherent regime, for the
first time. We have also calculated the spatial distributions of transport variables in the
coherent regime associated with the Quantum Hall Effect for the first time.

Resulting Publications and Presentations:

I S. Chaudhuri and S. Bandyopadhyay, "Spatial Distribution of the Current and Fermi
Carriers Around Localized Elastic Scatterers in Quantum Transport" Phys. Rev. B, 45,3 11126 - 11135 (1992).

S. Chaudhuri, S. Bandyopadhy~y, and M. Cahay, "Spatial distribution of the current,
Fermi carrier density, potential and electric field in a disordered quantum wire in a
magnetic field" Phys. Rev. B (to appear in May, 1993).

I Magnetoelectric States in Electron Waveguides

Investigators. Supriyo Bandyopadhyay

We have calculated the wavefunctions and energy dispersion relations of hybrid
magnetoelectric states in a quasi onc-dimerisional structure numerically from the
Schr6dinger equ,. ion. From these, we have also obtained the density of one dimensional
magnetoelecu-ic st..tes. These results have been compared with semiclassical results baseu
on the Bohr-Sominerfield quantization rule. The results are very important in many areas
of quantum magnet, itransport.

Resulting Publicatiois and Presentations:

S. Chaudhuri and S. Bandyopadhyay, "Numerical Calculation of Hybrid Magnetoelectric
States in an Electron Waveguide", J. Appl. Phys-, 71, 3027 - 3029 (1992).

I
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S. Chaudhuri and S. Bandyopadhyay, "Quantum Transport in a Disordered Quantum
Wire in the Presence of a Magnetic Field", Superlattices and Mirostructures, 1I, 241 -

i 244 (1992).

S. Chaudhuri, S. Bandyopadhyay and M, Cahay, "Numerical study of quantum
magnetotransport in disordered non-adiabatic constrictions", Proceedings of the
International Conference on Computational Electronics, 305 - 308, (1992).

3 Anomalous Magnetoresistance

Investigators: Supriyo Bandyopadhyay and Gary H. Bernstein

I We have experimentally observed anomalous magnetoresistance in a two-dimensional
structure at the liquid helium temperature of 4.2 K. This has been explained by invoking
subtle correlations between impurity scattering events in the structure. A Monte Carlo
simulation was performed and supports this picture.

3 Resulting Publications and Presentations:

N. Telang and S. Bandyopadhyay, "A Monte Carlo Study of Correlations Between
Impurity Scattering Events in a Two dimensional Electron Gas Causing Inhomogeneous
Magnetoresistance, Superlattice and Microstructures 11, 99 - 102 (1992).

S. Subrarnaniamn, S. Bandy padhyay, B. Das, G. H. Bernstein, and P. A. Sekula-Moise,"Anomalous Magnetoresistance Due to Correlations Between Disorder and Boundary
Scattering in a Two-Dimensional Electron Gas Channel" Phys. Rev. B, 45, 3826 - 3829

1 (1992).

Electromigration

Investigators: Supriyo Bandyopadhyay

We have calculated the weak electromigration forces causing 1/f noise and impurity
migration in quasi one-dimensional structures in linear response transport. We have shown
that the wind force and direct force can be quenched or reoriented by an external magnetic

I field. We have also performed these calculations in the hot electron regime using a Monte
Carlo simulation.

Resulting Publications and Presentations:

S. Bandyopadhyay, "Coupling and Crosstalk Between High Speed Interconnects in Ultra
Large Scale Integrated Circuits". IEEE J. Quant. Elec., 28, 1554 - 1561 (1992).

S. Bandyopadhyay, S. Chaudhuri, B. Das and M. Cahay, "Features of quantum
magnetotransport and electromigration in mesoscopic systems" Superlattices and
Microstructures, 12, 123 - 132 (1992). M. Cahay and S. Bandyopadhyay,

I
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I S. Bandyopadhyay, S. Chaudhuri, B. Das and M. Cahay, "'Magnetotransport and
electromigration in mesoscopic systems". Sixth hiternational Conference on Superlattices
and Microstructures, Xian, People's Republic of China, August 1992.

Collision Retardation Effects in Hot Electron Transport in Two Dimensional
I Systems

Investigators: Supri yo Bandyopadhyay

I We have performed a Monte Carlo simulation of hot electron transport in a quasi two
dimensional structure including the effects of finite collision duration (collision
retardation). We have found that collision retardation tends to make the electrons hotter by
suppressing energy relaxation collisions. It also increases velocity and energy overshoot

Resulting Publications and Presentations.

N. Telang and S. Bandyopadhyay, "'The effect of collision retardation on hot electron
transport in a quantum well", Phys. Rev. B (to appear in April, 1993.)

The Effects of a Magnetic Field on Phonon Scattering in Quasi One Dimensional

I Systems:

Investigators. Supriyo Bandyopadhyay

We have rigorously calculated electron-phonon scattering rates in quasi one dimensional
systems in the presence of an external magnetic field. We have found that a magnetic field
dramatically reduces both polar and non-polar acoustic phonon scattering by orders of
magnitude which has important implications for the quantum Hall effect. The reduction is
caused by a decrease in the overlap between initial and final state electron wavefunctions.I The scattering rates due to longitudinal polar and non-polar optical phonons and surface
phonons increases in a magnetic field (though the change is not as dramatic as in the case
of acoustic phonons). This is attributed to the opening of many new scattering channels
associated with the breaking of orthogonality between electron wavefunctions and
confined phonon modes in the presence of a magnetic field.

Resulting Publications and Presentations:

N. Telang and S. Bandyopaclhyay, "Quenching of Acoustic Phonon Scattering of
Electrons in Semiconductor Quantum Wires Induced by a Magnetic Field" Appl. Phys.
Lett. (in press).

I N. Telang and S. Bandyopadhyay, "Electron phonon scattering in quantum wires
subjected to high magnetic field", Proceedings of the International Conference on
Computational Electronics, 237 - 240, (1992).

N. Telang and S. Bandyopadhyay, 'The Effects of a Magnetic Field on Electron Phonon
Scattering in Quantum Wires by a Magnetic Field", submitted to Phys. Rev. B.

I I2



Supercomputing with Spin Polarized Single Electrons

Investigators. Supriyo Bandyopadhyay

We have proposed a novel quantum technology for ultra-fast, ultra-dense and ultra-low
power supercomputing. The technology utilizes single electrons as binary logic devices in
which the spin of the electron encodes the bit information. The architecture mimics two
dimensional cellular automata. It is realized by laying out on a wafer regimented arrays of
nanophase particles each hosting an electron. Various types of logic gates, combinational
circuits for arithmetic logic units, and sequential circuits for memory can be realized.

The technology has many advantages such as (1) the absence of physical interconnects
between devices (inter-device interaction is provided by quantum mechanical couplingbetween adjacent electrons), (2) ultrafast switching times of 1 picosecond for individual

devices, (3) extremely high bit density approaching 10 Terabits/sq-cm, (4) non-volatile
memory, (5) robustness and possible room temperature operation with very high noise
margin and reliability, (6) a very low power delay product for switching a single bit 10.20
Joules), and (7) a very small power dissipation of a few tens of nanowatts per bit. We have
also proposed a new non-lithographic fabrication technology for realizing these chips.

Resulting Publications and Ptesentations:

S. Bandvopadhyay, B. Das and A.E. Miller, "Supercomputing with Spin Polarized Single
Electrons in a Quantum-coupled Architecture," submitted to J. Appl. Physics.

S. Bandyopadhyay, Single Electronics with Nanophase Materials, invited lecture
presented at Argonne National Laboratory, Argonne, Illinois, June 1992.

S. Bandyopadhyay, Supercomputing with spin polarized single electrons, invited seminar
i presented at School of Electrical Engineering, Purdue University, March 1993.

Single Particle Lifetimes in Quasi-one-dimensional Structures

I Investigators: Supriyo Bandyopadhyay

We have experimentally measured, for the first time, the relaxation time for single particle
excitations in quantum wires as a function of both wire width and carrier concentration.
The measurements were made in a back-gated AlGaAs/GaAs heterostructure at 4.2 K.
The experimental data show excellent agreement with a theoretical model which uses only
one fitting parameter (to account for screening).

Resulting Publications and Presentations:

M. Cahay, T. Singh and S. Bandyopadhyay, "'Electron emission from a quantum well as a
result of exchange and Coulomb interactions", Proceedings of the International
Conference on Computational Electronics, 147 - 150, (1992).

I
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Quantum Transport in Nanofabricated Structures: Program Overview

Investigators: Gary H. Bernstein

The experimental aspect of the second year of the grant was very successful. We made

enormous progress in the area of fabrication of advanced nanometer-scale and quantum
structures, and have bridged the gap from pushing the limits of nanofabrication to
fabricating devices in metal, silicon and Ill-V materials for testing both at Notre Dame
and other universities.

Electron Beam Lithography Technology for Advanced Quantum Device Structures

I Investigators: Gary H. Bernstein

In the area of nanostructure fabrication, work progressed on several fronts. First, the very-
low-noise electron beam lithography (EBL) system was completed. The true capabilities
of the system were demonstrated through the achievement of high resolution over very
large scan fields. Asdiscussed in the resulting publication (Bazin and Bernstein), poor
noise performance of the associated EBL electronics can usually be compensated for by
performing exposures at small scan fields. This reduces the effects of the noise, but also
limits the flexibility of the system. By making major improvements in noise and system
performance, we accomplished sub-100-nm lithography in scan fields up to 1.4 W.tn (1400
tim) in size. Figure 1 shows a 55-nm metal line fabricated at a distance of about 300 4min
from the center of a 1 mm scan field exposed in our improved EBL system. The scan fields
discussed here are up to 25 times larger in area than those typically reported in the
literature. Our publication (presented at the American Vacuum Society Meeting in
Chicago, November, 1992) demonstrated that our results are quite useful over the full scan
field.

I
I
I

I

I FIGURE 1. 55-nm gold line fabricated 300 4tm from the center of a I mm scan field
demonstrating noise properties of improved EBL system.
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Secondly, new developers for poly (methyl methacrylate) (PMMA), as discussed in the
report for year one, bore fruit. As predicted, the new developers were instrumental in
achieving very high metal pattern densities. We fabricated dots and lines with pitches well
below 40 rum. Figure 2 shows the best line density we have achieved on gratings (on
silicon) to date- approximately 38 nm pitch. Some new properties of PMMA were
discovered, leading to a conference presentation (Bernstein et al., Chicago, 1992) and
several publications

It was found that the physical strength of PMMA limits the achievable metal thickness
obtained with the lift-off process. Figure 3 shows the minimum achievable remaining wall
thickness (necessary for successful lift-off) versus starting resist thickness. We found that
due to interwall forces and swelling of the PMMA at these dimensions, a maximum ratio
of 4.7 of resist thickness to wall width is possible before failure of the lines occurs.Also at
these dimensions, proximity effects increase dramatically. Figure 4 shows the normalized
area dose (normalized to the area dose necessary to create gratings with 40-nm- wide lines
on a 150-nm-pitch) necessary to effect successful lift-off of well-defined patterns. We used
a triple Gaussian model to fit the data, and found evidence that fast secondary electrons,
predicted by D. Joy1, were responsible for a sharp decrease in exposure dose as line pitch

I decreased below about 100 nm. Figure 5 shows that as the number of lines in the grating

I 1. D. C. Joy, Microelectronic Engineering, Vol. 1, p. 103 (1983).
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I
I increases, the required dose drops very quickly due to these fast secondary electrons,

leveling out only for gratings with more than about 15 lines. To our knowledge, ours is the
first detailed study of proximity effects on this very small size scale reported in the
literature

X. Huang, G. H. Bernstein, G. Baz2n, and D. A. Hill, "Spatial Density of Lines in PMMA
by Electron Beam Lithography," J. Vac. Sci. Technol. B., in press.

G. Bazfn and G. H. Bernstein, "Electron Beam Lithography Over Very Large Scan
Fields," J. Vac. Sci. Technol. B, in press.

D. A. Hill, X. Huang, G. BazAn, and G. H. Bernstein, "Swelling and Surface Forces-
Induced Instabilities in Nanoscopic Polymeric Structures," J. Appl. Phys., 72(9), pp. 4088-
4094 (1992).

I X. Huang, G. BazAn, G. H. Bernstein, and D. A. Hill, "Stability of Thin Resist Walls," J.
Electrochem. Soc., 139(10), pp. 2952-2956 (1992).

I G. H. Bernstein and D. A. Hill, "On the Attainment of Optimum Development Parameters
for PMMA Resist," Superlat. and Microsmruct., U, No. 2, PP. 237-240 (1992).

G. H. Bernstein, D. A. Hill and W. P. Liu, "New High-Contrast Developers for PMMA
Resist," J. Appl. Phys., 71 (8) pp. 4066-4075 (1992).

I G. H. Bernstein, D. A. Hill, X. Huang, and G. BazAn, "Failure Mechanisms of Very
Narrow PMMA Walls," presented at the 39th National Symposium of the American
Vacuum Society Chicago, IL, November 1992,.

G. BazAn and G. H. Bernstein, "Electron Beam Lithography Over Large Scan Fields,"
presented at the 39th National Symposium of the American Vacuum Society, Chicago, 1IL,
November 1992

II
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Quantum Transport in Metals

Investigators: Gary H. Bernstein

We have completed the first phase of building our low-temperature measurement
capability. Proof of this is demonstrated by the replication of an experiment performed
previously by Benoit et al.2 and Skocpol et al. 3 which demonstrates the dependence of the
magnitude of conductance fluctuations on the length of metal wires. Figure 6 shows
details of our data indicating UCF in gold lines, 70 nm wide and 30 nm thick, at 1.7 K.
The solid and dashed lines represent scans up and down in magnetic field, respectively.
(The lines are offset slightly as a result of mismatch between time constants of the lock-in

2. A. Benoit, C. P. Umbach, R. B. Laibowitz, and R. A. Webb, Phys. Rev. Len., Vol. 58, No. 22, p.
2343 (1987).
3. W. J. Skocpol, in Physics of Ouantum Electron Devircs, ed. by Federico Capasso, p. 367,
Springer- Verlag, New York (1990).
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amplifier as compared with magnetic field scan rates.) Figure 7 shows the RMS magnitude
of the conductance fluctuations as a function of normalized line length (where Lo, the
phase breaking length, is taken as I }am based on values found by Benoit et al.). The data
agrees very well with that of previous researchers with an exponential dependence with a
power of -3/2 to 2. The agreement of our data with that of previous researchers shows that
we are now capable of performing meaningful low-temperature experiments on a variety
of systems.
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FIGURE 6. Data indicating UCF in gold lines at 1.7 K.
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I We have succeeded in fabricating pairs of metal lines with widths of about 20 nm spaced
by about 16 nm, as shown in Figure 8. This is an improvement of a factor of about three in
device size as compared with a year ago. It was hoped that virtual phonon coupling would
be evident on these size scales at 1.8 K, but so far no effects of quantum coupling has been
demonstrated. We are continuing to decrease noise and capacitive coupling in our
measurement system and to decrease the spacing even further. In addition, a new low
temperature measurement system with capability of 300 m.K and 11 Tesla will be
operational in the near future.I

I
I
I
I

I
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0I 01I 0
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L/L+I
FIGURE 7. RMS magnitude of the conductance fluctuations as a function of normalized line
length (where L, is the phase breaking length taken as I p m).
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FIGURE 8. Pair of metal lines with widths of about 20 nm spaced by about 16 nm for use ing phonon coupling experiments.

Mesoscopic Photovoltaic Effect

Investigators. Gary H. Bernstein

We maintain a close collaboration with Dr. N. Giordano and graduate student Mr. R.
Bartolo at Purdue University. Their cryogenic measurement system is capable of in situ
rmicrowave irradiation. Using this system, they have observed d.c. voltages in mesoscopic
systems which arise as a direct result of the microwave energy4. This photovoltaic (PV)
effect has been observed in different systems 5, but we are attempting to directly locate the

I source of the rectification of the electron motion by separating the mesoscopic structure

I
I

I
4. J. Liu, M. A. Pcnniniton. and N. Ciordano. Phvs. Rev. B. Vol. -15, No. 3, p. 1267 (1992).

5. A.A, Byko%. G. ,%1. Gusev, Z, D, Kvon. and B. I. Fomin. Sty Phvs. JEIT Vol. 70, No. 1. p. 140
I1990).



into segments and isolating the individual scatterers. Figure 9 shows a sample built at
Notre Dame used in this experiment. These experiments are in progress.

FIGURE 9. Metal line fabricated on g~lass slide at Notre Dame showing voltaige probes and
interconnect pads. This pattern is currently employed to study the origin or the photovoltaic
effect in mesoscopic structures.

Additionally, we are trying to identify interference phenomena which might play a role in
the PV effect. Figure 10 shows a gold Aharonov-Bohmn ring on a glass substrate fabricated
at Notre Dame. Figure I11 shows PV data obtained at Purdue on the ring sample. The

II



I
Fourier transform of the data indicates an h/e component of the PV effect which could

prove that the effect is strongly related to interference phenomena.

I Resulting Publications and Presentations:

R. E. Bartolo, N. Giordano, X. Huang, and G. H. Bernstein, "Giant Oscillations in
Mesoscopic Photovoltaic Effect," poster presented at the 40th Midwest Solid State
Conference, Urbana-Champaign, Oct. 1992. (Judged Second-Best Poster at Conference.)

I
I

I
I
I
I
I

I FIGURE 10. Gold Aharonov-Bohm ring on a glass substrate fabricated at Notre Dame used to
determine the role of quantum interference in the photovoltaic effect.
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I FIGURE 11. Photovoltaic effect data obtained at Purdue University showing possible h/e
oscillations indicative of Abaronov Bohm effect. If confirmed, this data would show that phase
coherence plays a role in the PV effect.

Quantum Transport in HII-V Materials

Investigators. Gary H. Bernstein

In collaboration with Dr. S. Washburn at the University of North Carolina, Chapel Hill. we
have fabricated prototype structures with up to 8 control gates. Figure 12(a) shows one
prototype device requiring 14 leads consisting of both ohmic and Schottky contacts.
Evident is the mesa pattern with ohmic contacts and leads for Schottky contacts. Figure
12(b) shows the same device with a close-up of the Schottky gates on the mesa. Spaces
between Schottky contacts are as narrow as 40 nm. This structure will allow a large
variety of effects to be observed in one device ranging from single electron tunneling to
split gate behavior with a series of gates. We are in the process of transferring the
fabrication technology to device-grade material for testing at UNC. Similai devices will
be tested at Notre Dame when the milliKelvin cryostat is operational.

1
I
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I
Quantum Transport in Silicon

Investigators: Gary H. Bernstein

We have undertaken an exciting new area of fabrication for silicon iianostructures.
Initially, we demonstated that Fositive charges resulting from electron beam damage to
SiO2 remain fixed in space (Bernstein et al.). These positive charges cause a shift in the
MOSFET threshold voltage by up to -15 volts, so that at a gate voltage where an n-
channel MOSFET is still off, the area that has been irradiated by the beam has a significant
inversion layer in place. We ccnceived of the possibility of exposing narrow regions
between the source and drain of an n-channe! MOSFET which will remain conducting
while the rest of the device is nonconducting. We hope to demonstrate 1-D and quantum
transport in MOSFET's which hae been exposed in this way over narrow regions
between the source and drain. It should be emphasized that tme exposure is a straight-
forward application of EBL patterns performed through the existing gate metal and oxiae
of ; simple MOSFET.

So far, we have used our silicon IC processing laboratory to make test MOSFET's used in
these experinments. We have recently exposed MOSFET's as described above and have
observed some very compelling evidence of confinement due to the narrow potential well
created by the positive charge left after irradiation by the electron beam. Modulation of the
gate voltage is expected to narrow or widen the potential well thus controlling its

/7I SE-S A a

4//4I 3e - ,/32E"
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FIGURE 1•. Structure in the drain conductance, ga, between source and drain of an 8 pm longMOSFET at i.83 K as a function of gate voltage, V,, The 1.D channel was created by EBL exposureand resulting positive oxide charge creating a potential well at the interface.
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I

I properties. Figure 13 shows structure in the drain conductance, gd, between source and
drain of an 8 4.m long MOSFET at 1.83 K as a function of gate voltage, Vg. As expected
for confinement effects, the structure in the gd vs. Vds data disappears at higher
temperatures and at larger Vds. Also, there is no evidence of the structure for unexposed
MOSFET's fabricated in our laboratory, or for commercially obtained, prepackaged

I MOSFET's.

We have much work to do in order to verify that the structure is due to confinement of the
conducting channel brought on by the positive charge generation. We hypothesize so far
that the structure is diie either to UCF or single electron tunneling phenomena. Many more
experiments are planned in order to determine the precise nature of the effect. The pending
confirmation of confinement effects implies that a whole range of quantum devices
ranging from lateral surface superlattices to turnstile devices might be possible by simple
processing of existing silicon devices.

I Resulting Publicatio ns and Presentations:

G. H. Bernstein, S. W. Polchlopek, R. Kamath, and W. Porod, "Determination of Electron-
Beam-induced Positive Oxide Charge," Scanning, Vol. 14, pp. 345-349 (1992).

I
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I III. Research Personnel Supported

Craig S. Lent Assoc. Professor I Summer month

Wolfgang Porod Professor 1 Summer month

I Supriyo Bandyopadhyay Assoc. Professor 1 Summer month

Gary H. Bernstein Assoc. Professor I Summer month

I Zhi-an Shao Graduate student 6 months

Manhua Leng Graduate student 6 months

Suresh Subramaniam Graduate student 6 months

3 Xiaokang Huang Graduate student 6 months

I
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I IV. Theses supervised

Santanu Chaudhuri "Quantum Transport in Disordered Systems," MSEE May 1992
(advisor: S. Bandyopadhyay)

Renu Kamath, "Breakdown in Thin SiO 2 Films", MSEE August 1992 (advisors: G.H.
Bernstein and W. Porod)

Suresh Subramaniam, "A Study of Electron Transport in Backgated A1CaAs/GaAs
Modulation Doped Heterostructures for Novel Device Applications", May 1993.
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I V. Publication Reprints and Preprints

Journal Articles

Manhua Leng and Craig S. Lent, "Magnetic Edge States in a Quantum Channel with a
Periodic Array of Antidots", Superlattices and Microstructures 11, 351 (1992).

Manhua Leng and Craig S. Lent, "Recovery of Quantized Ballistic Conductance in a
Periodically Modulated Channel," submitted to Physical Review Letters.

Manhua Leng and Craig S. Lent, "The Quantum Transmitting Boundary Method in an
Applied Magnetic Field," to be submitted to Journal of Applied Physics.

C. S. Lent, P. Douglas Tougaw, and Wolfgang Porod, "Bistable Saturation in Coupled
Quantum Dots for Quantum Cellular Automata," Appl. Phys. Lett., 62, 714 (1993).

C. S. Lent, P. Douglas Tougaw, Wolfgang Porod and Gary H. Bernstein, "Quantum
Cellular Automata," to appear in Nanotechnology 4, (1993).

P. Douglas Tougaw and C.S. Lent, "Lines of Interacting Quantum-dot Cells: a Binary
Wire," submitted to Journal of Applied Physics.

C. S, Lent, P. Douglas Tougaw, and Wolfgang Porod, "Bistable Saturation in Coupled
Quantum-dot Cells," submitted to Journal of Applied Physics.

Wolfgang Porod, Zhi-an Shao, and Craig S. Lent, "Transmission Resonances and Zeros in
Quantum Waveguides with Resonantly-Coupled Cavities," Applied Physics Letters 61,
1350- 1352 (1992).

Zhi-an Shao, Wolfgang Porod, and Craig S. Lent, "Transmission Resonances and Zeros in
Quantum Waveguide Systems with Attached Resonators," submitted to Physical ReviewB.

Henry K. Harbury, Wolfgang Porod, and Stephen M. Goodnick, "Lateral p-n junctions
between quasi two-dimensional electron and hole systems at corrugated GaAs/AIGaAs

I interfaces," Journal of Vacuum Science and Technology B 10, 2051 -- 2055 (1992).

Wolfgang Porod, Henry K. Harbury, and Stephen M. Goodnick, "Lateral p-n junctions and
quantum wires formed by quasi two-dimensional electron and hole systems at corrugated
GaAs/AlGaAs interfaces," Applied Physics Letters 61, 1823 -- 1825 (1992).

Henry K. Harbury, Wolfgang Porod, and Stephen M. Goodnick, "A Novel Quantum Wire
Formed by Lateral p-n-p Junctions Between Quasi-Two-Dimensional Electron and Hole
Systems at Corrugated GaAs/A1GaAs Interfaces," Journal of Applied Physics 73, 1509 --

I 1520(1993).
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I L. Rota, F. Rossi, S. M. Goodnick, P. Lugli, E. Molinari, and W. Porod, "Reduced carrier
cooling and thermalization in semiconductor quantum wires," Physical Review B 47, 1632
-- 1635 (1993).

Henry K. Harbury, Wolfgang Porod, and Craig S. Lent, "Field Effects in Self-consistent
Transport Calculations for Narrow Split-gate Structures", Superlatrices and
Microstructures 11, 189 - 193 (1992).

S. Chaudhuri and S. Bandyopadhyay, "Spatial Distribution of the Current and Fermi
Carriers Around Localized Elastic Scatterers in Quantum Transport" Phys. Rev. B, 45,
11126 - 11135 (1992).

I S. Chaudhuri, S. Bandyopadhyay, and M. Cahay, "Spatial distribution of the current,
Fermi carrier density, potential and electric field in a disordered quantum wire in a

I magnetic field" Phys. Rev. B (to appear in May, 1993).

S. Chaudhuri and S. Bandyopadhyay, "Numerical Calculation of Hybrid Magnetoelectric
I States in an Electron Waveguide", J. Appl. Phys., 71, 3027 - 3029 (1992).

S. Chaudhuri and S. Bandyopadhyay, "Quantum Transport in a Disordered Quantum
Wire in the Presence of a Magnetic Field", Superlattices and Microstructures, 11, 241 -
244 (1992).

N. Telawg and S. Bandyopadhyay, "A Monte Carlo Study of Correlations Between
Impurity Scattering Events in a Two dimensional Electron Gas Causing Inhomogeneous
Magnetoresistance, Superiattice and Microstructures 11, 99 - 102 (1992).

I S. Subramaniam, S. Bandyopadhyay, B. Das, G. H. Bernstein, and P. A. Sekula-Moise,
"Anomalous Magnetoresistance Due to Correlations Between Disorder and Boundary
Scattering in a Two-Dimensional Electron Gas Channel" Phys. Rev. B, 45, 3826 - 3829
(1992).

S. Bandyopadhyay, "Coupling and Crosstalk Between High Speed Interconnects in Ultra
Large Scale Integrated Circuits", IEEE J. Quant. Elec., 28, 1554 - 1561 (1992).

S. Bandyopadhyay, S. Chaudhuri, B. Das and M. Cahay, "'Features of quantum
magnetotransport and electromigration in mesoscopic systems" Superlattices and
Microstructures, 12, 123 - 132 (1992). M. Cahay and S. Bandyopadhyay,

I N. Telang and S. Bandyopadhyay, "Quenching of Acoustic Phonon Scattering of
Electrons in Semiconductor Quantum Wires Induced by a Magnetic Field" Appl. Phys.

II Lett. (in press).

N. Telang and S. Bandyopadhyay, "The Effects of a Magnetic Field on Electron Phonon
I Scattering in Quantum Wires by a Magnetic Field", submitted to Phys. Rev. B.

S. Bandyopadhyay, B. Das and A.E. Miller, "Supercomputing with Spin Polarized Single
I Electrons in a Quantum-coupled Architecture," submitted to J. Appl. Physics.
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X. Huang, G. H. Bernstein, G. Bazln, and D. A. Hill, "Spatial Density of Lines in PMMA
by Electron Beam Lithography," J. Vac. Sci. Technol. B., in press.

G. Bazin and G. H. Bernstein, "Electron Beam Lithography Over Very Large Scan
Fields," J. Vac. Sci. Technol. B, in press.

D. A. Hill, X. Huang, G. Baz•n, and G. H. Bernstein, "Swelling and Surface Forces-
Induced Instabilities in Nanoscopic Polymeric Structures," J. Appl. Phys., 72(9), pp. 4088-

I 4094 (1992).

X. Huang, G. BazAin, G. H. Bemstein, and D. A. Hill, "Stability of Thin Resist Walls," J.
I Electrochem. Soc., 139(10), pp. 2952-2956 (1992).

G. H. Bernstein and D. A. Hill, "On the Attainment of Optimum Development Parameters
i for PMMA Resist," Superlat. and Microstruct., 11, No. 2, PP. 237-240 (1992).

G. H. Bernstein, D. A. Hill and W. P. Liu, "New High-Contrast Developers for PMMA
Resist," J. Appl. Phys., 71 (8) pp. 4066-4075 (1992).

G. H. Bernstein, S. W. Polchlopek, R. Kamath, and W. Porod, "Determination of Electron-I Beam-Induced Positive Oxide Charge," Scanning, Vol. 14, pp. 345-349 (1992).

I Reprints and preprints of journal article follow. Articles appear in the order in which they
are referenced in Section II.
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MAGNETIC EDGE STATES IN A ID CHANNEL WITH A PERIODIC ARRAY OF
ANTIDOTS

Manhua Leng and Crag S. Lent
Dep•mernt of Elecclr:LL Engineering

University of Notre Dame
Noat Dame, IN 46556

(Received t9 May i991

Recent experiments in cransporn throsigh a ballistic consmcrion with a periodical corru-
gauon on one wall to modulate the width (1] have revealed miniband structuw in the
presence of a magnetic field. We have previously explored the properties of edge states
in a similar structuel21. Here we present our c~lculazion of bandsuucture and edge
states on a ID channel havmg an array of anidots placed along its central axis. Our
intirest is to examine the allowed states in such a channel and, by direct calculating the
particle current density, to visualize the current flow via magnetic edge states as well
as localied Landau states.

1. Introduction the channel and inside the antidots is taken to be infinite.
The potential in the conducting region of the chamiel is

Quantum transport of 2DEG systems in the presence of zero.
a perpendicular magnetic field has the remarble result of The single-band, effective.mass model has been era-
a quantized Hall resistance. A transport theory developed ployed in calculating the banodstucrure by solving Schrodin-
by Btnimcr f31 hua been employed to explain the integer get equation for Bloch-state wavefuncuons,
quantum Hall effect of ballistic channel. In this formalism,
magnetic edge state play an important role in the sense ), Y)) =ehu,.(,). (Y)
that the Hall resistance can be expressed in terms of the
'ansmission properties of these ed;?e channels. Recently with cign-energy E,,(k) d m = 0.05m0 . A tag.

Kouwenhoven et al, studied the coniductance of a perodi- netic field is applied in .; direction and the Landan puge

cally modulated channel and ob.srvvd miniband formation is chosen so that the vector potential A = -yBiz.

in zero magnetic field and quantiza. conductance in a 2T The resulting time-independent Schrodinger equation

field. We have investigated a similar but infinitely long for U,.k(Z- Y) and E.(k) is,

corrupated channel The bandstruct,.re and current distri- - a
bution of edge states in the channel have been discussed. -7 - 2i(ka - Ji)T + (ka - Jy)2 4- V u.A,(z,y)

Here we extend his work to exiamine tiansponr of an E(

infinitely long ID channel with an array of antidots sitting E.(k)u..(zV), (2)

in the channel (4]. The peometry is shown in Figre 1.
The bmndau'ucture and the current diambunon in a perpen-
dicular magneic field have been calculated.

2. Model And Method d *M111 1D

The absictue is shown in Figure I with dimensions in-
dicated. The width of the channel is d. and an army of an-
tidots with diameter D sitting at the channel center results
in an effective periodic potential profile in i direction with
period of &. In tie results shown in the following s•ection, FIGURE 1. Geometry. Unit cell is marked with dashed
4-a rand I" 3/10. For simplicity, the poenrtia outside lines.

0749-6038/92/030351 +06 002.00/0 © 1992 Academic Prem Limirted
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Here all the variables are expressed in a dimensionless emerged because the applied magnetic field pushes elecuon
fashion. Lengths are expressed in units of a. energy and to the wall and suppresses back-scartenng on the antidots.
potential art expressed in units of E0 =_ 2/(2m'a ). and The flat bands consists of two major kinds of states. One

magnetic field is specified by ,1 M cRnj/i. kind originates from Landau orbits which are mainly local-
For a unit cell of a = 1000A. a value of 30 for - ized in the wider region between two antidots(bulk Landau

corresponds to a 2 Tesla magnetic field, level energies are at E, / E, = (2n + 1)3. i.e., 40 and 120
We used the finite element method to discrenze Equa- for the first two with 3 = 40). Another. kind of flat band

tion (1). Numerical solutions for the first 10 eigen-energies belongs to the family of edge states: they are pushed noo

and eigen-functions were obtained using a subspace itera- against either wall of the channel but against the antidot

tion technique in first Brillouin zone. The current densities therefore circulate around the penphery of the antidoL
therefore were directly calculated from the wavefunctions.

3. Results
B. Magnetic Edge States

A. Bandstructure
Edge states have been discussed in quantum transport

Figure 2 shows the energy ba~ndsu'ucture for zero tag- but often indicated schematically. With the wavefunctions
neutc field. Minigaps are formed because the antidots in hands from our numerical solution, we are readily able

placed in the channel act as a periodic potennal. The rem- to calculate the current density in the structure. The parti-

nant of a parabolic band(".e" lines) represents the states cle current density, , is calculated from the wavefunc-
traveling via the region between the antidots and the chan- tion as,
nel edge. Some bands ("oo" lines) are fairly flat through

the whole Brillouin zone and represent those states which
are confined in the wider regioi by two neighboring anti- . r -

dots. This confinement is effective up to very high energy. J,.& = -(. Jy)

The left bands("++" lines) are mixtures of the above two. -

The particle current densities and probabilities in a unit 2- • l.vk - (3)
cell for three typical states S, S2. S,1 art shown in Figure

3.
We have calculated the bandstruc;ures for 3 = 20, 30, Several typical states taken from Figure 4 are shown in

and 40 but only present the result for 3 = 40 here. We Figure 5. State A corresponds to the lowest Landau level

find the energy bands change by filling in some of the and is approaching its bulk value from above at this high

minigaps as the magnetic field increases. At high field, field. State B is the magnetic edge state surrounding the

as displayed in Figure 4. energy levels are resolved into antidoL This kind of edge states does not carry overall net

quasi-parabolic band and a series of flat bands. 1The former current. State C is the magnetic edge state pushed to the
wail of the channel by magnetic field. Current is mostly
carried by this kind of state. State D is a mixed state of

180 all kinds of states described above but is mainly localized-

120L B "C 4. Summary

D -.... '"' We have calculAted the bandsmicture of a ID channel
ULJ t...... . with periodic poential barriers represented by an array

60 ....... of anudots at center along the channel. At zero mag-
- ... - -- ' ... netic field. minigaps form due to the periodic pontial.

P=40 Flat bands appear because of the constricnon between the
eft walls and the antidoms. At high magnetic fields. sorne of

1 3 5 the minigaps close because of the suppression of back-
ka//l scattering by the magnetic field. There are two kinds of

FIGURE 4. Shown is the bandssmucture when 3 = 40 in magnetic edge states present in :he structrwe: cimulating
extended zone scheme. states which move around the antidot's periphery , and
".."- traveling edge states on the walls; "oo" - circulating traveling edge states which move along the the channel

edge states. ","-localized states between anadots; "'.+ walls. The circulating states carry no net current down the
- mixed states; dashed line is 2D bulk Landau Level. channel. Localized Landau orbits ame also present.
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| Recovery of quantized ballistic conductance
* in a periodically modulated channel

I Manhua Leng and Craig S. Lent

Department of Electrical Engineering

I University of Notre Dame

Notre Dame. IN 46556

I (submitted to PRL April 6, 1993)

I Abstract

y.Ve exarmne tne Dailisuc conouctance ot a ,ong, periooicaily-moauiatea

:-ectron cnannei. In ,enerai. zne conauctance or a modulated channet is a
compiicatea funcnon of the energy. For a long periodically-modulated
I ,nannei. however. the quanuzed conductance charactenstc of a simpie
quantum point contact :s recovered. The value of the quantized
conductance is no longer a monotonically increasing function of energy,
I-owever. Conductance can step down as well as up with increasing energy.
We explain these results by comparing the calculated conductance with the
tandstructure of the corresponding intinite penodicaily-modulated
channel. The comparison shows a direct correspondence between the index
of the conductance plateau and the number of positive-velocity bands at a
.yen energy. The results persist in the presence of an applied magneticI eld. In the high-field regm= they can be interpreted as selecuve resonant
-ack-scatternng of eage states. We predict non-monotonic steps :a the
nteger quantum Hall resistance in sucn structures.

fACS. 73.20.Dx. 72.10..d, 73.50Jt
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[,Quantzzanon of the conauctance ot a ouantum point contact tQPC), such as those m

Oinc tea by iaterai connnement or a two-CUme .nai eiecoon ,gas in a semiconductor. is

:ow weil knoNv -1 and well under od [1-Si. The uuantizauon is due to the creation of

'atcraI •b-band modes. analogous to waveguide modes. and the fact that each mode m

,ýames tne same amount of current. The linear-response conductance for a QPC is simply

(.,E)=N(E)(2e-/h), where N(E) is an integer function of the energy which counts the

number ot travelling modes with energy below E. The conductance increases

monotonically in steps as additional modes become available. If the ballistic channel is

patterned with further features. bends. constrictions, or other obstructions. conductance I
.uanuzanon is lost and a complicated structure for 0(E) emerges due to mne details of

quantum interference and backscatuenng in the channel [4-5].

In this ietter we show that if a ballistic channel has a periodically modulated structure, the

quanuzation in G(E) is recovered but it is no longer a monotonic function of energy. We

numencally calculate t'ansmission coefficients and the linear-response conductance of

such a channel. We also calculate the energy bandstructure for the corresponding infinite m

modulated channel and show that simple features of the bandsmicture explain the

conductance behavior 161.

We examine the structure shown schematically in Fig. 1. A channel of width d is

perioaically narkowed to a width of d-h. The period of the modulation is a, the number of

narrow regions is N, and the length of each narrow region is w. We present results for the

partcular case where d/a = 2.0, h/a = 0.6. and wia = 0.4. A magnetic field of magnitude B m

is applied perpendicular to the plane in the 2 direction. The Landau gauge is chosen for

the vector potential so A = -vB2 . We adopt a single-band effective-mass model with

an effectve mass appropriate for GaAs, m"fm 0 = 0.067, and ignore spin throughouLt Hard

wall potentials are assumed to define the channel modulation while the potential inside the

channel is taken to be zero.

IRew0,u cE q~minm in~m ss •mmlamm pstw~miy m 2.,,.,,
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I We solve the two-aimensionai time- indenenaent Schrodinger equation.

"-" .ehBv ,,B-v
-;j' •,2 Vo (x, y))'ql(x.y) = Exr(x,v) (1)

I 2m m 0X

To calculate the conductance of a channel of finite length and N periods, we solve Eq. (1)

:o obtain the complex energy-dependent transmission and reflection amplitudes for each

I transverse mode (defined in the wide regions). We solve directly for the wavefuncrion and

transmission amplitudes in one unit cell (marked by dashed lines in Fig. 1). then use a

I ,,cattenng matrix cascading method [71 to obtain transmission and reflection amplitudes

: dr the whole structure. Transmission and reflecnon into evanescent modes must be

.ncluded in the cascading process. The conductance in the linear response regime is then

I obtained using the Landauer equation (8],

G = r(et) (2)

I where t,.j is the transmission amplitude from mode j into mode i for the whole structure.

I The numerical solution of Eq. (1) for the unit cell with open boundaries is accomplished

ýising the Quantum Transmitting Boundary Method [9]. a numerical algonthm we have

I developed based on the Finite Element Method for solving the two-dimensional

Schrbdinger equation for current-carrying states. We employ a recent extension of the

method to include the case of an applied magnetic field [101.

I We compare the conductance for the finite system with N periods of modulation with the

SI bandstrucnire of the infinite periodic system. For the infinite system. we can use the Blocih

theorem and look for a solution of the form •,,,(x, y) = e uk, (x, y) where unx,y)

I is the periodic part of the Bloch function. We solve Eq. (1) with this substitution as an

eigenvalue problem for E,(k) and uj(x,y). We use the finite element method to achieve

I Raiuwy of quawaWe buIbm aimtan a u~h ama W " N 3
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numencal discretization over the unit ceil. Meshes or up to 5151 nodes were used to l

.,chieve convergence at hich values of magnetic nield.

Figure 2 shows the calculated conductance and transmission coefficients T, it 2 fJrorI

a finite channel and the bandstructure for an infinite channel when no magnetic field is

applied. Energy is expressed in units of El, the energy of the first transverse mode (sub-

band) in the wide regions. Figure 2(a) shows the transmission of a channel with three unit

cells (three constrictions). The total transmission for various incoming modes are shown I
separately. The energy bardstu'ucture for the infinite modulated channel is shown for the

first Bnllouin zone in Figure 2(b). Energy is plotted on the horizontal axis so that the

reiaionship to the conductance results below is clear. Figure 2(c) shows the conductance l

calculated from Eq. (2) for a long channel with N = 85 periods. Figure 2(d) shows the

transrmssion for individual modes in the long modulated structure (1 j.

For only thme constrictions in the channel the total transmission, shown in the solid cu

of Figure 2(a), which is proportional to the conductance, is not quantized. This is to be

expected because of mode mixing due to the abrupt narrowing of the channel (2,31. The

conductance of the long modulated channel, shown in Figure 2(c), is striking in that the

conductance is essentially quannzed in units of 2e 2/h [121. Unlike the usual quantization

of QPC ballistic conductance, however, the conductance does not increase monotonically

but rather steps up and down between quantized levels, sometimes going to zero( 131. The

ballistic conductance of the very long channel can be written as G(E)=Nc(E)(2e2/h), where

.Vc(E) is the integer index corresponding to the quantized conductance plateau for energy

E.

The conductance quantization in Figure 2(c) can be understood by examining the

bandstructure shown in Figure 2(b). For each value of the energy, define an integer Nb*(E) I
to be the number of energy bands (disinct E,(k) curves) with positive group velocity

(slope). N<+(E) is also a non-monotomc function; it is zero in energy gaps and st"ps up

Roumwol o 6m" mofm m s - - .a 4,pe m = I
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I _na down as a tunction of cnerzv. By comr anng Figures 2(b) and 2(c) we see that, in fact.

i '. i~..:-, El. The rnumoer ot roNtuve . eiocit' ranas tor the innnite system vicids the

,uannzauon or the conauctance in me enooaically-modulated finite system. The colored

I regions of the figures illustrate this correspondence. Each value of :VNE)=Nb*(E) is

represented by a different color (white-O. red= 1. yellow=2, green=3, blue=4).

For a straight channel or a short ballisnc point contact. Vb*(E) is simply the sub-band

I number and increases monotonically. The well known cancellation of velocity and

i density-of-states factors leads to identical current being carried in quasi-one-dimensional

-utD-bana. Thus N.tE) is quantized ana monotonic in the same manner.

I The non-monotonic behavior of N,,'(E) in the periodically modulated channel is due to

I the significant amount of reflection and mode mixing caused by even a single constriction

in the channel. Transport is by no means adiabatic. This mode mixing in the finite channel

I resuits in band mixing in the bandswucrure of the infinite channel. The band mixing results

in the appearance of forbidden gaps and allowed energy regions with differing numbers of

energy bands. Just as sub-bands in a straight channel each carry the same amount of

current, Bloch bands in the periodic structure each carry the same current.

These results have no strictly one-dimensional analogue. The bandstructure in a one-

dimensional periodic system has the same number of bands (two, one with positive

I velocity and one with negative velocity) in each allowed region. Nb*(E) in one dimension

only takes the values of I in a band or 0 in a gap. The integer values, (0,1,2,3, ...) of

.Vb,(E) for the modulated channel manifest the two-dimensional character of the channel

I rmixing with the quasi-one-dimensional character of the current flow.

1 It is important to note that the transmission of individual modes is not quantized but the

total transmission is. Figure 2(d) shows that for no individual mode is the conductance

IRaemwy adqmmmdWW cooeua . s pow~a~hy moa=&dn
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.,uannzed. The Quantization occurs as the various modes are mixed by the periodic

,c atterinne.

The recovery of ballistic conductance quanrizanon persists in the presence of a

perpenaicular magnetic field. Figure 3 shows the conductance and bandstrcture

calculated for the case of a moderately high magnetic field- (-.) ad = 24.3 (for a

unit cell with a=200A, this corresponds to B= 20 T) [14). Here conduction can be

described in terms of edge states and the energy is natur.ily expressed in units of the first

bulk Landau level EL = I B ( .

.n the iTut or extremelv high magnetic fields, all transport would be through edge states

ana the suppression of back-scattering between edge-states on opposite sides of the

channel would guarantee monotonically increasing and quantized conductance (15]. The

interesting result here is that for intermediate field strengths (or for higher edge-state

indices), where backscattering can still occur between edge states, the conductance is I
nevertheless quantized. Again, however, the quantization is non-monotonic and related

directly to the number of positive-velocity bands in the bandstructure for the

zorresponding infinite system. A step down in conductance as energy is increased means 3
:nat an edge state which was contibuting to the conduction has now been turned off at the

higher energy because it resonantly back-scatters from the constrictions.

Notice in Figure 3(c) that the conductance is lowered by one unit for energies just above 6 I
EL. Examination of the individual mode transmission coefficients in Figure 3(d) shows

that it is thefirst edge state (with a slight admixture of the third) which has been resonamnly

reflected. For this energy range the second and third edge staies are almost entirely

transmitted but the first and outermost edge state is reflected. This selective reflection of

edge states is similar to the experimental results of MUller et al. [161, who used an applied

potential from a metal gate to reflect individual edge states. The consequence of this

reflection was a deviation from the usual integer quantum Hall effect (IQHE) plateaus, a

aa!6



:evianon understandable in the edge-state picture or the IQHE- [151. The retiec•ion of

-elective edge states ,een in our calculanon for a moaulated cnannel suggests that a

simiiar IQHE deviations, steps up and down between Hall resistance plateaus. should be

observable in these geometries.

In conclusion, we have studied the ballistic transport properties of a periodicaily

modulated channel. Our results show that a long modulated channel has a ballistic

conductance which is quantized, but a non-monotomc function of energy. The index of a

quantized conductance plateau has a one-to-one correspondence to the number of

-ositive-velocitv states in the energy bandsu'ucrure for the corresponding infinite

I ~ noduiated channel. This phenomenon persists at high magnetic field, where it can be

interpreted as resonant reflection of particular edge states and should produce anomalous

IQHE behavior.
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FIGURE CAPTIONS I
3IGURE 1. The geometry or the periodicaily moaulated quantum channei.

FIGURE 2. The modulated channel in no applied magnetic field. (a) Transmission

coefficients for a short channel with three unit cells 'N=3). (b) The energy

bandstructure for the infinite periodic channel. The colors indicate the number of

individual energy bands with positive group-velocitv in each energy region (white=O,

red=l, yellow=2, green=3, blue=4). (c) Conductance for a long channel with 85 unit

cells (N=85). Colors indicate the index of the quantizaton plateau (white=O, red=l, 3
'.ellow=2. green=3. blue=4,). The correspondence of the color schemes in (b) and (c)

;:Iustrates that the conductance of the finite channel is related to the number of positive- I
velocity bands in the bandstrctumr of the infinite channel. (d) Transmission coefficients

of individual modes for the long modulated channel.

FIGURE 3. The modulated channel in an applied magnetic field. (a) Transmission I
coefficients for a short channel with four unit cells (N=4). (b) The energy bandstructur 3 .

for the infinite periodic channel. The colors indicate the number of individual energy

bands with positive group-velocity in each energy region (white=0, red=l. yeUow=2, I
7'reen=3. blue=4). (c) Conductance for a long channel with 40 unit cells (N=40). Colors

indicate the index of the quanuzation plateau (white=O, red=l, yeilow=2. green-3,

blue=4). The correspondence of the color schemes in (b) and (c) illustrates that the

conductance of the finite channel is related to the number of posirive-velocity bands in

the bandstructure of the infinite channel. (d) Transmission coefficients of individual I
modes (edge states) for the long modulated channel.
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Bistable saturation in coupled quantum dots for quantum cellular automata
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. smole mocel quantum aot cedi containing two electrons is anaiyzecd as a candidate for

;uantum cellular automata imrnementations. The ceil has eigenstates wnose charge density is
'trongiy aligned along one of two airections. In the presence of the eiectrostauc perturbation aue
.o a neighboring cell. the ground state is nearly completely aligned (polarized) in one direction

only. The polanzauon is a highly nonlinear function of the perturbtng electrostauc fields and
sniows tfhe strong bistable saturation important for cedlular automation function.

Nanoscaie quantum structures with poteutial device
- applications have been an active area of exploration for Eon ,. E -,r-1  t,.X(aQ .. ,a,,)

several years. A frequent criticism: of many of these struc- .

t cures is the absence of the saturating behavior which forces _ E , V . (1)

c- .onvenuonal transistor elements into one of two stable . E,-,:-'->-;"
states. "on" or "off." Such bistable saturation is important
to keep device performance robust in the presence of phys- where the number operator n,.,=a".•a, 0 and the operator
cai irnomotenciues and noise.; a, creates an electron at site i with spin a. The cell pa-

The poSStlity, of reaiizng ceilular automata (CA) rarmeters which define the Hamiltonian are then the on-siteI Vth reguiar arrays of quantum dots has oeen suggested by energy, Eq. the tunneling energies. i. ,Lno the on-site Cou-
Bate and others: In one example- the necessary nonlinear lomo charging energy, EQ. The parameter VQ is deter-
response of each dot is the result of resonant tunneling mined by fundamental constants and the dielectric con-
through the dot.' We focus on a different paradigm in stant of the material in which the dots are formed. A fixed

* which each cell of the CA is composed of groups of cou- posive charge 0 is assumed at each site sufficient to mair-

pled quantum dots. The conining potentials are such that tain overall cell charge newuuity. For an isolated cell, this

Ielectrons can tunnel between dots in the same cell but not only renormalizes E but it is important in calculating the

between different cells. Quantum mechanics and the Cou- interacmon between cells a is done below.

lomb interaction in each cell determine the poasble cel For the numerical results we discus= here we chooseE states. The Coulomb interaction between electros i dif- parameters based on a simple- experimentally accessble

ferent cells provides a local intercellular coupling mecha- model. We consider a cell in a semicondctor" with

nism. The nonlinear response of the cell to its electrostatic • =0-0.n7mf, which is composed of cirular quantum

* environment must be a feature of the internal cell dynam- dots of diameter D== 10 nm. The near-neighbor distance

' cs. RecenE success in fabricating arrays of very small quar- between the ceils is 20 nm. The dielectrc constant for the

turn dots with one or two electrons per dot5 prompts us to semiconduuctor is 10. We take t=0.3 meV for coupling to
-- mnvestigate possible few-electron coupid-dot cel geome- the center site and r=0.03 meV for coupling between outer

tries which provides the sort of bistable saturation so de- dots. These tunnelig enapes can be vaned greatly by

- strable. In this letter, we analyze a possible cell geometry adjusting the potenial barrners between dots. We take EQ

with two electrons In the cell. We show that quantum con- Vhe eD13). We will a ume hee that the two elecrons

S inement and the intraceflular Coulomb interaction to . in the cell have anuparalel spins. The parallel spin case

gethr yeld he onlnearsatraton bhavor hichis m. ields results which are qualitatively very similar.-- g ether y ield the non linea r satura tion behavior w hich is es- h i e s a e f t e H s lt n a 4 M a oThe eigenstatea of die Hamiltonian (Eq. (1L)1 can now

senual. be calculated for this specifi choice of cell parameters. The
We examine a simple nanosructure model ceil coa- Hami a is i ed directly in the basi of few-

- taming five coupled quantum dots. The model cell is shown electron states. From the two-electron wave function we
schematically in Fig. I. It consists of a central site and four calcuate the single particle densty at each site. p, by find-
-- ne~ghbn'g sites. Tunneling is possible both between the
outer sites and the central site, and betwm adjacmt outer
sites. We first consider such a cell holding two electronsI (the contrasting case of single and triple cel occupancy is
discussed below). We show below that the Coulomb repul- '4"' '

sion between the two electrons causes the ground state of 0 .
the system to be one in which the electron occupy antip-

o s sites. P-+i P=-i

We model the cell using a Hubbsd4-ye Hamilton= . I. Tquan cdl c g ot By* q n dM 'whwI with Coulomb repulmtw The Hamiltoms for a angle iso- oacu by two etu The - ' Coh rsk UO

lated cell can be written. eim aim bain y betm m Le PM - I dP--I sutle1
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FIG. . The ceii.ceil reasvo uncuon. The induced Dolaanuion oi cell 0i
i is shown u a mcuon of the poanu• onanaabong celi2 (inset)• .
The soid line repreentU the polxnZau of the ground state and the

daahed line repreaems the polanluuma of the dm emcitd state.
00I

ing the expectation value of the total number operator, .0 5ý

n,--'np, +n. -. , at each site.
It is helpful to defne a scajar quantity which repre- -i.0 0

sents the degree to which the electron density is aligned p,
either along the line through sites I and 3. or along the line bi

through sites 2 and 4. To this end we define the polanza-
non ot the cell as FIG. 3. T"he ce.ceil mpoame function for other ,ed. oci-acu. (a) A

single elecul in the cedl. (b) Tm elctrami i two spin up aad one spin

P P'I ) - pO- 'p*j) (2) down) in the celtl.

Po-r pt"P2- P2 - P4

If sites 2 and 4 are vacant. the cell is completely in the zlntion P2. This figure displays the central result of this

P= - I polaized state as shown in Fig. 1. If sites I and 3 letter--that the ceil-cell response funcuon is highly noniin-

are vacant, the cell is completely in the P= - I polarized ear and bistable. Even a very slight polarizaion of a cell

state. Clearly if the on-site energies are the same for all induces nearly complete polarizaon of a neighbor.

sites, the ground state is degenerate. compnmng a combi- The strongly nonlinear muration of the polaiatimon

nation of both pohaizMatm, with no polazation pre- doa not occur if only a singleelectron is in the cell7

ferred. Figure 3(a) shows the cell-cefl response function for the
We examine the polariaton of the low-lying cigen- ground state of a cell occupied by a suigle eletrom The

states of the cell when perturbed by the presence of a poariuation is a very weak and nearly linear funco of
nearby cell. We denote the target cell as cell I and the the perturbation. The response function for a triply occu-
perturbing cell as cell 2. The potental at each site i of cell pied cels (two spin up, one spin down) is shown m Fig.

I is aitered by the Coulomb interacton with the charge Pl./ 3 (b). Although the response is clearly not linear. it is not
at site j of cell 2. The Hamltonian for cell I can be wtten nearly as strong as the two-electron case. The butable sat-

as the sum of the isolated cell Hamiltonian and a pertur- uranon prent in the doubly occupied cells is a result of

bation due to cell 2. the eiisamt splitting of the degmenrte ground state by the

H1U = ffJ' + l1-, (3) perrbution of a neighboring cell.

whereThe nrapid saturumon of the polarizahon is the ssential
nonlinear effect which sugitta this type of cell could pro-

Pip-P= vPd P7.e the bas for a CA-type array. In such an array of
1 I R2j-" l', (4) celt. the diffengpolari uions of nesghbaorng cehU Would

Here R,,., denotes the position of site i in cell m. We Play the edecrostanc perturbation which led to a dd-

solve for the eigesitua of the Hamiltonian (Eq. (3)] as iLite pobriman of the gpound atmt of the cei. It is pm-

the polarzat•ion of cell 2 is vared i the range P = [- I,1]. sible to extract a CA ruMe set by finding the cdl polariza-

The occupancy of the central site in cell 2 is assume to be tion induced from the vaious combimnuou of neghbonng

zeraý so that the chargp densities. p are simple functous polarizaioms. This prac, and the behavor of arrays of

of the polarizati P2. T edistanc betwm cll ceter is quantum cells will be discned at ester lmegh else-
three times the near-nsibbo distance in a cell. For each wher-'
value of P2. we Wid the eleaia and the assciated It must be noted that to date, quatum dot filbicaon

charge densities aW polanzatons (Eq. 2). The resut is the tachq have produced dots which tend to be radaw far

cel)cel rapome fuint-t-he polanuw n of cel I in- apart thus only rather weak Conlwuhi Moudp, em ' 4

duced by a p•inzaftl of cell 2. Our anakmy premm that fabrianon tecm will
Figure 2 shows the polasruam P, of the lowesit two shortly ovserim these difflealtii, poMI t gh Mac-

cell eigaistanm as a fumcio of the perturu ceed polar- rotollefllarahr tha odco .11MMO ~I
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I
I Abstract

We formulate a new paradigm for computing with cellular automata (CA)
composed of arrays of quantum devices - quantum cellular automata.
Computing in such a paradigm is edge-driven. Input, output, and power are
delivered at the edge of the CA array only; no direct flow of information or
energy to internal cells is required. Computing in this paradigm is also
computing with the ground-state. The architecture is so designed that the
ground state configuration of the array, subject to boundary conditions
determined by the input, yields the computational result. We propose a
specific realization of these ideas using two-electron cells composed of
quantum dots, which is within the reach of current fabrication technology.
The.- charge density in the cell is very highly polarized (aligned) along one
of the two cell axes, suggestive of a two-state CA. The polarization of one
cell induces a polarization in a neighboring ceil through the Coulomb
interaction in a very nonlinear fashion. Quantum cellular automata can
perform useful computing. We show that AND gates, OR gates. and
inverters can be constructed and interconnected.

I
I
I
I
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1. Introduction I
The continual down-scaling of device dimensions in microelectronics technology has led

to faster devices and denser circuit arrays with obvious benefits to chip performance.

Dramatic as they have been, these changes have been evolutionary in nature in that even I
the most advanced chips use the same paradigms for computing as their more primitive

ancestors. There is now much expectation that the availability of very dense device arrays

might lead to new paradigms for information processing based on locally-inten..onnected

architectures such as cellular automata (CA) and cellular neural networks [lI). I
There has also been considerable interest in quantum mesoscopic structures for their

possible application as devices[2]. Much has been learned about the behavior of electrons

flowing through very small structures in semiconductors. Various investigators have

pointed out the natural link between mesoscopic quantum systems and cellular automata

architectures (3,4,5]. Because quantum structures are necessarily so small, it is difficult to 3
conceive of a regime in which a single quantum device could drive many other devices in

subsequent stages [6]. Furthermore, the capacitance of ultra-small wires forming the 3
connections to each device would tend to dominate the behavior of an assembly of

quantum devices. For these reasons locally interconnected smrctures such as cellular U
neural networks and cellular automata may provide the natural architecture for quantum

devices. I
We focus here on the idea of employing cellular automata (CA) ar-hitectures which are

compatible with nanometer-scale quantum devices - tnus, quantum cellular automata

(QCA). A quantum cellular automaton would consist of an array of quantum device cells

in a locally-interconnected architecture. The cell state becomes identified with the I
quantum state of the mesoscopic device. Two-state CA's are attractive because they

naturally admit to encoding binary information. For a two-state QCA, each cell should

have two stable quantum states. The state of a given cell should influence the state of the

QUANTUM CELLULAR AUTOMATA 2
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I neighboring cells. Two ingredients are essential then: 1) the bistability of the cell, and 2)

coupiing to neighboring celis.

We propose a cell which is composed of coupled quantum dots occupied by two electrons

[7]. The requisite bistability is accomplished through the interaction of quantum

I confinement effects, the Coulomb interaction between the two electrons, and the

quantization of charge [8]. The intercellular interaction is provided by the Coulomb

5 repulsion between electrons in different cells. We analyze this cell and the interactions

between neighboring cells in Section 2.

In Section 3 we propose a new paradigm for how computation could be done with an array

I of quantum devices. Because no direct connections can be made to interior cells,

I information or energy can enter the crray only from the edges. Edge-driven computation

imposes further constraints on thc nature of the computing process [9]. The lack of direct3 connections to the interior cells also mreai.s that no mechanism exists for keeping the array

away from its equilibrium ground-state configuration. We are therefore led to use the

ground-state of the array to do the computation. Computing with the ground state means

that the physics of the array miust perform the computation by dissipating energy as it

relaxes to the ground state. This has the distinct advantages that the computing process is

I independent of the details of the energy relaxation mechanisms and that the unavoidable

energy dissipation is useful to the computing process.

Section 4 demonstrates that QCA's can perfomi useful functions. We show how logical

gates and inverters can be constructed with arrays of the two-electron bistable quantum

cell we propose. Section 5 discusses some key issues in realizing QCA's as a viable

I technology and Section 6 identifies technological advantages that a successful QCA

implementation would enjoy.

I
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2. Few-electron Quantum Cells I
The specific cell we consider here is shown in Figure 1. Four quantum dots are coupled to

a central dot by tunnel barriers. The two electrons tend to occupy antipodal sites in one of

two configurations, shown in the figure as the P=+] and P=-1 configurations. Our

analysis below will show that the cell is indeed in one of these two stable states, and that

an electrostatic perturbation, perhaps caused by neighboring cells, switches the cell

between these two states in a very abrupt and nonlinear way. This permits the encoding of 3
bit information in the cell.

The essential ingredients that produce the bistable saturation behavior [101 so desirable

are 1) quantum confinement, 2) Coulomb interaction between electrons, 3) few-electron

quantum mechanics, and 4) the discreteness of electronic charge.

A model for the quantum cell

We model the cell shown in Figure 1 using a Hubbard-type Hamiltonian. For the isolated

cell, the Hamiltonian can be written,

"c°" = ° ini + , t (ai' t ao° a + ao° ,I aj' 0) +

IRIS'.., n + • .,"-I

Here ai.a is the annihilation operator which destroys a particle at site i (.'--0,1,2,3,4) with 3
spin a. The number operator for site i and spin a is represented by ni,o. The on-site energy

41

32P=+I 
P=-4

FIGURE 1. The quantum cell consisting of five quantum dots which are occupied by two
electrons.l The mutual Coulombic repulsion between the electrons results in bistability between the

P=U 1 and P=1 stteLsM
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for the ilh dot is E0 j; the coupling to the central dot is t; the charging energy for a single

dot is EQ. The last term represents the Coulombic potential energy for two electrons

located at sites i and j at positions Ri and Rj. Unless otherwise noted, we will consider the

I case where all the on-site energies are equal, Eoj=EO.

For our standard model cell, on which the numerical results reported here are based, we

obtain the values of the parameters in the Harmiltonian from a simple, experimentally

I reasonable model. We take each site to be a circular quantum dot with diameter D=IO nm,

and take E0 to be the ground state energy of such a dot holding an electron with effective

mass m = 0.067 mo. The near-neighbor distance between dot centers, a, is taken to be

I 20 nm. The Coulomb coupling strength, VQ, is calculated for a material with a dielectric

constant of 10. We take EQ=VQI(D/3) and t=O2 meV

I It is useful to define a quantity which represents the degree to which the charge density for

a given eigenstate of the system is aligned linearly. This alignment could be either along

the line through sites I and 3 or along the line through sites 2 and 4. For each site, we

I calculate the single particle density pi, which is simply the expectation value of the total

number operator for the two-electron eigenstate. The polarization, P, is defined as

(P I+ P3 ) - (P2 + P4) (2)

P0 + PI + p 2 + p3 + p 4

For an isolated cell with all on-site energies equal, no polarization is preferred. We will see

I below that perturbations due to charges in neighboring cells can result in a strongly

I polarized ground state. The polarization thus defined is not to be confused with the usual

dipole polarization of a continuous medium. It simply represents the degree to which the

I electrons in the cell are aligned and in which of the two possible directions the alignment

occurs. For the states of interest here, the cell has no dipole moment.

The interaction of the cell with the surrounding environment, including other neighboring
I H~~~cei esl v

cells, is contained in a second term in the Hamiltonian which we write as "' We solve
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the time independent Schrbdinger equation for the state of the cell, T,,), under the I
influence of the neighboring cells:

_ c"+ celln(3

0Hoe +H ner) i n ) = En W ) (3) I

The spins of the two electrons can be either aligned or anti-aligned, with corresponding

changes in the spatial part of the wavefunction due to the Pauli principle. We will restrict 3
our attention to the case of anti-aligned spins here because that is the ground-state

configuration; the spin-aligned case exhibits nearly identical behavior. The Hamiltonian is I
diagonalized directly in the basis of few-electron states. We calculate single particle 3
densities, pi, from the two-particle ground-state wavefunction lW0),

P , Vol ni. 4'o), (4)

and from the densities calculate the resultant polarization P (EQ. 2). To maintain charge I
neutrality, a fixed positive charge, p, with magnitude (215)e is assumed at each site. For 3
the isolated cell, this has no effect and is included in the on-site energies. For several cells

in close proximity, as will be considered below, the maintenance of overall cell charge

neutrality means that the intercellular interaction is due to dipole, quadrupole, and higher

moments of the cell charge distribution. If cells had a net total charge then electrons in I
cells at the periphery of a group of cells would tend to respond mostly to the net charge of

the other cells. I
The cell-cell response function

To be of use, in a CA architecture, the polarization of one cell must be strongly coupled to I
the polarization of neighboring cells. Consider the case of two nearby cells shown in the

inset to Figure 2. Suppose we fix the charge distribution in the right cell, labeled cell 2. We

assume cell 2 has polarization P 2, and that the charge density on site 0 is negligible (this 3
means the charge density is completely determined by the polarization). For a given

polarization of cell 2, we can compute the electrostatic potential at each site in cell 1. This I
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I ~1.01.

I o0.5
0 . .......... .

FP P1

-0.5 '

-1.01.
-0.10 -0.05 0.00 0.05 0.10

I a) P2

I0.04 **.

0.02

>, 0.00

= -0.02-I-
-0.04-

-0.10 -0.05 0.00 0.05 0.10
b) P21

I

I FIGURE 2. The cell-cell response function. The polarization of the right cell is fixed and the induced
polarization in the left cell is calculated. The top figure shows the calculated polarization of cell I as a
function of the polarization of cell 2. Note that the range of P2 shown is only from -0.1 to +0.1. This is
because the transition in the induced polarization is so abrupt. The lower figure shows the first four
eigen-energies of cell 1. The polarization of the lowest two are shown in the first figure.
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additional potential energy is then included in the total cell Hamriltonian, Thus the l

perturbing Harmiltonian is

Hcell = cell V! n (5)Hinter = H 1  = ~ ,Vn,(5)
i e. cell 1,a

where

Vm= X VQ (P-.P) (6)
kVm,j IR--jRm--I 6I

is the potential at site i in cell m due to the charges in all other cells k. We denote the

position of sitej in cell k as Rki. The total Hamiltonian for cell I is then

HCe1 - Hcell + Hce1l (7)

The two-electron Schr~dinger equation is solved using this Hamiltonian for various values I
of P2. The ground state polarization of cell I, P1 , is then computed as described in the

previous section. 3
Figure 2b shows the lowest four eigen-energies of cell 1 as a function of P2. The 3
perturbation rapidly separates states of opposite polarization.The excitation energy for a

completely polarized cell to an excited state of opposite polarization is about 0.8 meV for I
our standard cell. This corresponds to a temperature of about 9 K. Figure 2a shows PI as a

function of P2 -- the cell-cell response function. A very small polarization in cell 2 causes

cell I to be very strongly polarized. This nonlinear response is the basis of the CA's we

describe here. As the figure shows, the polarization saturates very quickly. This

observation yields two important results: I

I --

I
I __
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1 1. The bipolar saturation means that we can encode bit information using the cell

polarization. A cell is almost always in a highly polarized state with P - ± 1. We

define the P=+I state as a bit value of 1 and the P=-l state as a bit value of 0. Only

if the electrostatic environment due to other cells is nearly perfectly symmetric will

there be no polarization.

I 2. The polarization of one cell induces a polarization in its neighbor. Figure 2

- shows that even a very slight polarization will induce nearly complete polarization

of a neighboring cell. This cell-cell Coulomb coupling provides the mechanism for

_ CA-like behavior. The rapid saturation of the cell-cell response function is

- analogous to the gain necessary to preserve digital logic levels from stage to stage.

The abruptness of the cell-cell response function depends on the ratio of the dot-to-dot

coupling energy, t in Eq. (1), to the Coulomb energy for electrons on different sites. The

I magnitude of the coupling depends exponentially on both the distance between the dots

and the height of the potential barrier between them [11], each of which can be adjusted as

I engineering parameters. Figure 3 shows how the cell-cell response function varies with t.

I _
I 1.0.

0.5 ,---
S0.0.

-0.5

-1.0 " - .... . ....-:

-0.10 -0.05 0.00 0.05 0.10| 2:
FIGURE 3. The cell-cell response function for various values of the dot-to-dot coupling energy (t in
Eq.1). The induced cell polarization Pt is plotted as a function of the neighboring cell polarization P2.
The results are shown for values of the coupling energy, t=-0.2 (solid),-0.3 (dotted),-O.S (dashed). and
.0.7 (dot-dashed) meV. Note that the response is shown only for PZ in the range A0.1. ÷0.11.
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Self-consistent analysis of several quantum cells I
In the analysis of the previous two sections, the two-electron eigenstates were calculated

for a single cell. It is important to note that for the Hamiltonian employed, these are exact

two-particle eigenstates. Exchange and correlation effects have been included exactly. I
This was possible because we could explicitly enumerate all possible two-electron states

and diagonalize the Hamiltonian in this basis set. We want to analyze clusters and arrays

of cells to investigate possible device architectures. To do so we need to calculate the

ground-state wavefunction of a group of cells. Exact diagonalization methods are then no

longer tractable because the number of possible many-electron states increases so rapidly I
as the number of electrons increases. We must therefore turn to an approximate technique.

The potential at each site of a given cell depends on the charge density at each site of all

other cells. We will treat the charge in all other cells as the generator of a Hartree-type I
potential and solve iteratively for the self-consistent solution in all cells. This

approximation, which we call the Intercellular Hartree Approximation (ICHA), can 'e

stated formally as fillows. Let To be the two-electron ground-state wavefunction for cell

k, and p7 be the single particle density at sitej in cell m. We begin with an initial guess for

the densities. Then, for each cell we calculate the potential due to charges in all other cells. I

V V (8)
m*k,.j J~~~ki

Although the neighboring cells will normally dominate this sum, we do not examine only

near-neighbors but include the effect of all other cells. For each cell k, this results in a

perturbation of the basic cell Hamiltonian of equation (1):

Hce=l Vkni a' (9)

ie cell ka.

The Schrodinger equation for each cell is now solved for the two-electron ground state

eigenfunction:
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(Hce0 l + H c ) k (O)

From the ground state eigenfunctions we calculate the improved single particle densities.

Pj = 0~t[nJ •(lI

The improved densities are then used in Equation (8) and the system is iterated until

convergence is achieved. Once the system converges, the many-electron energy, Etotal, is

m computed from the sum of the cell eigen-energies using the usual Harwee correction term

to account for over-counting of the Coulomb interaction energy between cells:

I q
/C k>q .i'j IR k, i - R q, 11

It should be stressed that the ICHA still treats Coulombic, exchange, and correlation

I effects between electrons in the same cell exactly. The Hartree mean field approach is used

to treat self-consistently the interaction between electrons in different cells. Since

electrons in different cells are physically distinguishable (there being no wavefunction

overlap), the exchange coupling between them is zero. The Hartree and Hartree-Fock

approximations are therefore equivalent in this case.I
The converged ICHA solution will be an (approximate) eigenstate of the entire system. In

general, however, it need not be the ground state. As with the usual Hartree

approximation, which of the eigenstates the scheme converges to is determined by the

choice of the initial guess. To find the ground state we must try many initial state guesses

and determine which converged solution has the lowest energy. Typically, this does not

present a serious problem for the type of cellular arrays considered here because the set of

I likely ground states is easily discerned. In general, a systematic search may be required.

The procedure described above uses, at each stage of the iteration, only the ground-state

wavefunction of each cell. If all the excited states of the entire system were desired, we

I would have to include states composed of excited cell states as well. Since our interest is
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in the ground-state, this is not necessary. It is relevant to point out however. that because I
each cell is in a "local" ground state, we do not require coherence of the many-electron

wavefunction across the whole array of cells. All that is required to support this analysis is

that the wavefuncuon is coherent across a single cell. No information about the phase of 3
the wavefunction in other cells is relevant to the wavefunction in a given cell - only the

charge densities in other cells need be known. I

I
I
I
I
I

I
I

I
I
I
I
I
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I 3. Computing with Quantum Cellular Automata

We present a new paradigm for computing with quantum cellular automata. This

represents a complete picture of how quantum devices could be coupled in a CA

architecture to perform useful functions. The paradigm we propose is shown

schematically in Figure 4. We will focus on the zero temperature case; temperature effects

will be considered below. As shown in the figure, the inputs are along an edge of the array.

I Specifying the inputs consists of electrostatically fixing the polarization of the input cells.

This could be accomplished by simply applying voltages to conducting "set" lines which

come in close proximity to the cells, but any method that fixes the cell polarization state

would do. The output cells are not fixed; their polarization state is sensed, perhaps by

electrostatc coupling to "sense" lines. There could also be several input and output edges.

i Computation proceeds in the following steps:

I
I

Inputs Outputs

WI

I a)

I Set Sense

imb-
b)

FIGURE 4. The new paradigm for computing with quanti.m cellular automata. The input to the
QCA is provided at an edge by setting the polarization state of the edge cells (edge-driven
computation). The QCA is mllowed to dissipatively move to its new ground-state configuration and
the output is sensed at the other edge (computing with the ground state). The "set" and "sense" lines
are shown schematically.
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1. Write the input bits by fixing the polarization state of cells along the input edge

(edge-driven computation).

2. Allow the array to relax to its ground state with these inputs (computing with the

ground state). I

3. Read the results of the computation by sensing the polarization state of cells at the I
output edge.

The essential elements that define this computing paradigm are computing with the ground

state and edge-driven computation, which we discuss below. I
Computing with the Ground State U

The advantage of computing with the ground state is that it leaves the, 'nputing process

insensitive to the details of the dissipative processes which couple rt_ electrons in the

array to the environment. Consider a QCA at zero temperature for which all the input cells

have <.een held in a fixed state. Dissipative processes have brought the array to its ground

state configuration for these boundary conditions. Suppose at time t-O the input cell states

are set to their new input values completely abruptly. Just after the inputs are applied at the

edge of the QCA, the array is no longer in the ground state but is now in an excited non-

stationary state for the new boundary conditions. In the 4ne between 0 and t,. a

characteristic relaxation time, various dissipative processes will bring the array to its new

ground-state configuration. After that, the array will be stable until the boundary

cor;itions are changed again. During the relaxation time the temporal evolution of the

system is very complicated. Even without dissipation, the system will undergo quantum

oscillations due to interference between the various eigcnstates which compose the t=OI

statc. The dissipative processes, like phonon emission, introduce extraordinary

complication in the temporal evolution. The exact state of the system at a particulai 'ne

t~t, depends not just on phonon emission rates, but on the particular phonons emitted by
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these particular electrons. In short, the temporal evolution before t =tr depends on the

precise microscopic details of the dissipative dynamics. By contrast, the ground state

configuration to which the system relaxes is completely independent of the dissipation

mechanisms. Hence we choose, to do computing with the ground state only.

Edge-driven Computation

In the QCA computing paradigm we are proposing, the input data is represented by edge

,.ells whose polarization is fixed. Computing then proceeds by allowing the physics

interior to the QCA to "solve" the dissipative many-electron problem for this new set of

boundary conditions. The array is designed so the part of the ground-state ".olution" of

the many-body problem which appears at the output edge corresponds to the solution of

the computing problem posed by the input data.

The advantage of writing input and reading output only at the edges of the array is that no

I separate connections to the array interior need be made. Because quantum devices are of

necessity extremely small, the problem of making contacts to each element or device

becomes severe. ;f a single array contains thousands of individual cells, the "wiring"

problem is overwhelming,

Edge-driven computation is, in fact, the practical requirement which makes computing

with the ground state necessary. If no connections can be made to the interior of the array,

I there is no controlled mechanism for keeping the system away from the ground state.

Neither clocking nor refresh mechanisms are available. With a change in input, the system

will dissipate energy and find a new equilibrium ground state. The only choice is whether

I to try to do computation with the system's transient response, or with its ground state. For

the reasons discussed above. the ground-state approach is preferable.

Cov.entional computing, by contrast, is done using very highly-excited, non-equilibrium

I states. Because each element (device) can be separately contacted, energy can be fed into
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the system at each point. The entire system can thereby be maintained in non-equilibrium

states. The advantage of this is that the energy difference between the states used for

computing can be very much larger than kBT. The requirement that each element be driven

far from equilibrium ultimately contributes to the difficulty of reducing the scale of

conventional technology to the nanometer level. The breakdown of the operating device

physics at small scales also plays a crucial role in the scale-down problem. I
Ultimately, temperature effects are the principal problem to be overcome in physically I
realizing the QCA computing paradigm. The critical energy is the energy difference

between the ground state and the first excited state of the array. If this is sufficiently large

compared with k8 T, the system will be reliably in the ground state after time t:,.

Fortunately, this energy difference increases quadratically as the cell dimensions shrink. If

the cell size could be made a few Angstroms, the energy differences would be comparable i
to atomic energy levels - several electron volts! This is, of course, not feasible with

semiconductor implementations, but may ultimately be attainable in molecular

electronics. It may, however, be possible to fabricate cells in semiconductors small enough

to work reliably at reasonable cryogenic temperatures.

Relation to synchronous CA rules

The relationship betveen the Quantum Cellular Automata described here and traditional

rule-base CA's is not direct. Cellular automata are usually described by a set of CA rules

which govern the temporal evolution of the array [12]. Time proceeds in discrete

increments called generations. The rules determine the state of the array based on its

configuration in the previous generation. Clearly, for the QCA described here, the

temporal evolution proceeds not through discrete generations but through continuous 1
physical time. Moreover, as argued above, we are not particularly interested in the

temporal evolution of the QCA in order to do computing. We are only concerned with the

final ground state configuration associated with a particular input state. Like the rule-based i
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I synchronous CA, the QCA is an array of interacting multi-state cells and the behavior is

dominated by near-neighbor interactions between cells. Thus, the QCA is chiefly related

to traditional CA's by analogy.

I Nevertheless, it is possible to construct a rule-based CA from the QCA interacting cell

3 Hamiltonian (Eq. 10). The CA so constructed may be useful, perhaps not in describing the

transient state of the QCA, but rather in calculating the ground state configuration, which

I is our primary concern anyway.

I CA rules from the Schrodinger equation

The CA rule set is constructed as follows. For each cell, consider all possible polarization

states (P = ± 1) of the neighbors (neighbors out to any distance useful can be considered).

For each configuration of the neighboring polarization, solve the Schrbidinger equation

(Eq. 10) and determine the target cell ground-state and its polarization. The map of

I neighbor polarizations to target cell polarization constitutes the CA rule set for that

i particular target cell. In general, a different rule set may apply to each cell. Typically,

many cells will have similar environments and use the same rules.

I The rule set obtained by this procedure can be recast in terms of a weighted voting

procedure. In deciding the state of a particular cell, the neighboring cells vote according to

their own state. The votes are weighted differently depending on the geometrical

relationship between each neighbor and the target cell. The votes of closer cells are

weighted more heavily than those of more distant cells. In addition, the weights can be

negative, indicating that the energetics of the interaction between the neighbor and the

target cell favor them having opposite polarizations. The CA rules generated by the

solution of the Schr6dinger equation for the target cell can then recast in the form of

I voting weights for the neighbors. Any set of voting weights which reproduces the CA rule

set is equivalent.
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Extended CA rules I
This procedure so far has one problem which can be remedied by expanding the rules

slightly. It is possible for the votes of the neighbors to result in a "tie". That is, the

neighboring polarizations may be arranged so symmetrically that the ground-state I
polarization of the target cell is zero. It is desirable to break this tie by consulting the

immediate history of the neighbors. The neighbors which flipped their polarization in the

preceding generation are simply weighted more heavily than those which have not flipped.

This introduces a notion of momentum which is otherwise absent in a two-state CA. With

these momentum rules, ties are still possible but are now exceedingly rare events that can I
be handled by tie-breaking with a random number.

The CA rules corresponding to a particular QCA are thus derived from the Schrddinger

equation and augmented by the momentum rule discussed above. The evolution of the I
synchronous CA is still not directly related to the temporal evolution of the physical QCA.

The CA rules know nothing of the details of the dissipative dynamics, for example.

However, in our experience, the synchronous CA with the momentum rules can be useful 3
in determining the ground state of the QCA. If we start with a stable QCA state, and then

flip the input cells to correspond to the new input condition, the synchronous CA will I
evolve to a stationary state which corresponds to the ground state of the physical QCA.

That the final state is really the ground state can be checked by using the more rigorous

self-consistent calculations described in the previous section.

I
I

I
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I 4. Device Applications

I Two types of QCA structures for computing can be envisioned. One type is a very large

regular array of cells. We have work in progress exploring this type of array. It is widely

I appreciated that doing computing with large regular CA's is a significant challenge,

i particularly with a simple rule set. The solution to this difficult problem may have the

greatest long-term potential, however, for exploiting the massive parallelism inherent in

I the QCA paradigm.

I A second type of QCA structure involves a highly irregular array of cells. We show below

that using simple irregular arrays one can produce structures analogous to wires, inverters,

I AND gates and OR gates. Since these can be connected together, more-complex devices

such as adders and multipliers can be constructed. Because the individual devices are so

small, this represents a potentially enormous increase in ýcnctional density in an

I architecture free of the usual interconnect problems. We examine below how these basic

logical gates can be constructed from quantum cells.

The device configurations shown are the results of self-consistent calculations of the

I ground state using the ICHA described above. The figures show the calculated ground-

state charge density on each site of the cellular array. In these figures the dot diameters

I reflect the relative electron density at each site (dot) in the cell.

I
I
I
I
I
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a) CI 23 -6 . [1 ZE"

• I
S• I

b) C) j 3
FIGURE S. QCA wires. a) The basic wire. b A corner in a wire. c) Fan-out of one ,igal into two I
channels. In each case the darker (left-most) cell has a tixed polarization which constitutes the
input. Note that these figures are not simply schematic, but are a plot of the results of a self-
consistent many-body calculation of the ground state for the cellular array. The diameter of each
circle is proportional to the calculated charge density at each site.

Wires

A linear chain of cells oriented as shown in Figure 5a functions as a wire, transmitting a 0

or I (P=+l or P=-I) from one end of the wire to the other. This is demonstrated by fixing 3
the polarization of one end (the left), while letting the other end be unconstrained, and

calculating the self-consistent ground state of the chain using the ICHA method. Figure 5a I
shows the results of that calculation. Not surprisingly, the ground state consists of all cells

aligned with the same polarization as the end cell. The first excited state of the chain has a

"kink" in it at the chain center, i.e., half the cells polarized one way and half polarized the

other. For our example, the energy of the first excited state is about I meV (AEIkBT= 10 K)

above the ground state energy. Wire bends and fan-out are also possible, as shown in I
Figures 5b and 5c respectively. Again, the left-most cell is fixed and the ground-state 3
configuration calculated. This sort of fan-out is appropriate for the edge-driven paradigm

discussed above. 3

I



I
I
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I

FIGURE 6. An inverter constructed from a quantum cell automaton.

Inverter

By offsetting one chain of cells from another, as shown in Figure 6, an inverter can be

constructed. If the polarization of the one end is fixed, the polarization of the other end

I will be opposite.

I AND and OR gates

AND and OR gates can be made from the intersection of two wires. Figure 7 shows an OR

i gate. The darker boxes are around the input cells. Their polarization is set to correspond to

I a) b) 0 E]

I 1o

I
0I ~c) 0

I

FIGURE 7. An OR gate. The cells in darker squares are fixed to the input states. The cel in the
dashed square is biased slightly toward the "1" state.
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the logical values shown. For the case when the inputs are 0 and I (Figure 7c), the central I
cell state would normally be indeterrunate since a -tie vote" exists between the input

cells. To resolve, this we bias the central cell by increasing the site energy on sites 2 and 4

slightly. This could be accomplished by making the quantum-dot diameter slightly smaller

on these two sites. It is then slightly more energetically favorable for the cell to be in a I

state, thus breaking the tie. The AND gate is constructed in exactly the same way except I
that the central cell is biased toward the 0 state. The AND gate is shown in Figure 8. Both

these figures reflect the results of self-consistent solutions of the many-electron problem

for the entire array shown.

I-
I
I

a) 1~b) 0j

0I

S• I -

I

e o

C) I

FIGURE S. An AND gate. The cells in darker squares are axed to the input states. The cell in the
dashed square is biased slightly toward the "0" state.
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I Memory cell

A single quantum cell can act as a memory storage cell. Once prepared in an eigenstate

I with P=-+ 1, for example, the ceU will in principle remain in that configuration indefinitely.

I One problem is that slight variations in the potential environment may make it slip into the

other eigenstates. To avoid this it may be desirable to use small or medium-size arrays of

I quantum cells to store each bit. This is shown schematically in Figure 9. One advantage of

a regular rectangular array of cells is that it may be possible to use the interaction of many

cells with the set and sense lines (the exact mechanism for setting and sensing is not

critical here). The problem of making non-interfering address lines is certainly non-trivial.

I
I
I
I
I a) b) •••:

a)

I+
I+

FIGURE 9. Quantum cellular arrays as memory storage cells. A single bit can be stored in a) a
single cell, b) a line of cells, or c) an array of cells. Arrays of cells would make the storage moreI robust.
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5. Issues for QCA as a Technology I
Fabrication of QCA's in semiconductors appears to be within reach of cun'ent technology.

The GaAs/A1GaAs system has proven fruitful as a means of fabricating quantum dot

structures by imposing electrostatically a pattern on the two-dimensional electron gas I
formed at the heterojunction interface. Other materials systems, including molecular

systems, are also candidates for realizing a QCA structure. Any implementation must deal

with several issues key to the successful operation of the cell we have described. 3
Uniformity of cell occupancy

It is important for the operation of the QCA that each cell contain two electrons. The cell-

cell response function degrades significantly if one or three electrons are in a cell.

Fortunately, the physics of the cell acts to ensure that the occupancy will be very uniform.

This is so because the Coulomb interaction c2uses significant energy-level splitting

between the different cell charge states. The Coulomb energy cost to add the third electron I
is on the order of 10 meV for cells with a 30 nm separation. Experiments by b er er

al. [13] have shown that uniformity in the number of electrons/dot can be maintained in

arrays of 108 dots.

Dot-size control 3
The size of the fabricated quantum dots must be fairly well controlled. Variations in the

size of the dots translates into variations in the confinement energies on each dot. The cell

bistability occurs because the Coulomb interaction is determinative in selecting a

preferred polarization state. If the magnitude of the variation among the dots in the

confinement energies is greater than the Coulomb energies involved, the cell will be

pinned at a fixed polarization. Note that dot size variations are critical only within a single

cell; variations between different cells are easily tolerated.

I
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Temperature

The temperature of operation is a major factor. Our QCA quantum cell is expected to work

at liquid helium temperatures for dot dimensions which are within the capability of current

semiconductor fabrication technology. As technology advances to smaller and smaller

dimensions on the few-nanometer scale, the temperature of operation will be allowed to

increase. Perhaps our envisioned quantum cellular automaton will find its first room

temperature implementation .n molecular electronics.
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6. Technological Benefits I
If successful, quantum cellular automata would represent a revciutionary, rather than

evolutionary, departure from conventional electronics. In this section we review some

possible benefits a QCA technology might provide. m

Quantum cellular automata solve the interconnection problem. It is widely acknowledged

that the main challenge to further improvements in microelectronics is the interconnection

.knd wiring problem. The QCA we discuss accommodate this challenge in a natural m

fashion. Interconnect lines are no longer necessary to provide the communication between

cells; the Coulomb interaction provides the coupling mechanism. Edge-driven

computation requires neither energy nor information to be transmitted directly to interior

cells. Computing with the ground state makes both clocking and refresh signals

unnecessary. I

Quantum cellular automata make possible ultra-high density computing elements. The m

chief technological advantage of the proposed structures is the improved functional

density of computing elements. With a 10 nm design rule, the cell dimensions would be

about 50 nm x 50 nm, which translates into an extremely high packing density of about

1010 cells/cm 2 . Since, as shown above, a single cell can function as a logical gate, this

represents an extremely high functional density. I

Quantum cellular automata are extremely low in power dissipation. High packing density

is usually accompanied by high power dissipation. However, in QCA structures, the

information is stored in physical systems close to their ground state. The energy input to I
the array is the energy required to set each input bit - about I meV per input ,it. This

energy is dissipated in the time it takes for the QCA to relax to its new ground-state

configuration, probably less than a few picoseconds (phenon scattering times). This

represents a power dissipation of roughly 10"10 Watts per input bit, much less than

conventional devices. I
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Quantum cellular automata offer the possibilit of ultra-fast computing. As estimated

above, the computation occurs in a QCA over the relaxation time for the electrons in the

I array, probably on the order of picoseconds. It is clear that this relaxation time is a

function of the electron-phonon coupling and represents a fundamental speed limit for

doing computation with electrons in a semiconductor.

Quantum cellular automata may facilitate fabrication of ultra-dense memory storage. The

I QCA cell encodes a bit of information. Writing and reading the bit involves very low

power dissipation and is very fast. While problems of cell addressing, and cell volatility

m appear challenging, the possibility of solid-state electronic storage of information at these

densities invites further investigation.

_- Summary

We have presented a specific model for using nanoelectronic devices in a cellular

I automata arc>.:iecture and proposed a new paradigm for computing in this framework.

Each cell consists of a central quantum dot and four neighboring dots occupied by two

electrons. The Coulomb repulsion between the two electrons, quantum confinement

I" effects, and the discreteness of the electronic charge, combine to produce strongly

polarized (in the sense defined above) ground states. The response of this polarization to

the electrostatic environment is highly nonlinear and exhibits the bistable saturation

necessary for a two-state CA. The concept of edge-driven computation solves the

I interconnection problem. The concept of computing with the ground state in the QCA

approach permits ultra-fast operation, eliminates problems of interconnect delays,

resistive and capacitive effects, power dissipation, and limited densities associated with

- conventional architectures.
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I ABSTRACT

We examine the behavior of linear arrays of cells composed of quantum

I i
dots. Each cell holds two electrons and interacts Coulombically with
neighboring cells. The electrons in the cell tend to align along one of two
axes resulting in a cell "polariza'ion" which can be used to encode binary
information. The ground-state po.,larization of a cell is a highly nonlinear
function of the polarization of its neighbors. The resulting bistable
saturation can be used to transmit binary information along the line of
cells, thus forrming a binary wire.

I
I
I

PACS: 73.20.Dx, 85.90.4e, 7 1.90.+q
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I. Introduction
Many Investigators have noted the connection between quantum devices and locally

interconnected architectures [1. The small currents and charges inherent in quantum

devices ame poorly suited for driving large numbers of devices, particularly conventional I
devices. Requiring that a quantum device interact only with its neighbors is much mome

promising. Despite the appeal of this synthesis, few proposals including both a

specification of the component quantum devices and the coupling between them have 3
appeared [21.

Recently, a specific proposal for a quantum cellular automata (QCA) implementatbon has

been made by the authors and coworkers 13,41. The scheme is based on a quantum cell 1
composed of several quantum dots and containing two electrons. Coulomb repulson

between the electrons causes the charge in the cell to align along one of two directions.

These two alignment states, "polarizations", are used to encode binary information. The 1
Coulomb coupling of the charge distribution in one cell to the charge in neighboring ceils

provides a physics-based locai coupling between cells. The coupling leads to a highly

bistable saturation behavior in the polarization, avoiding some of the criticisms of usual 3
quantum interference-based device characteristics [51. Specific arrangements of cells

which can function as AND and OR gates have been proposed.

In this paper we examine in detail the linear arrays of such quantum dot cells which form

the "wiies" in the QCA scheme proposed. In the next section we review the physics of the

basic cell and the model proposed in reference [3]. Section M presents the theoretical

machinery, a Harare self-consistency scheme, which we use to examine arrays of cells.

Secuon IV contains the examination of the behavior of a Linear array of cells. We show

that for a large range of physical parameters, the linear array behaves as a binary wire. U
Section V contains a discussion of the results. 1

1
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_ II. Coupled Quantum Cells

= The quantum dot cell is shown schematically in Fig. (I a). It consists of four quantum dots

on the comers of a square and one central dot [6]. The cell is occupied by two electrons [7,

I S]. Tunneling occurs between near-neighbors and next-near neighbors but the barriers

between cells are assumed sufficient to completely suppress electron tunneling between

cells. We treat the quantum dots in the site representation, ignoring any degrees of

fr•edom within the dot.

A. Cell polarization
The Coulomb interaction causes the two electrons to tend to occupy antipodal sites. The

I two-eiectron ground state may then consist of the electrons aligned along one of two

perpendicular axes as shown in Fig. (lb). We define a quantity called the cell polarization

I which measures the extent to which the charge is aligned along one of these two axes. We

denote the single-particle density at site i as pi. The polarization is then defined as

S(PI +P 3 ) - (P 2 +P 4) (1)

PI+ P1 + p 2 +P3 + P4

I If the two electrons are entirely localized in site I and 3, then the polarization P= 1. If the

electrons are on sites 2 and 4, P=-. , An isolated cell would have a ground state which is a

linear combination of these two polarizations, hence a net polarization of zero(91.

B. The cell Hamiltonian

We constu'ct a simple model of the cell using a tight-binding Hubbard-type Hamiltonian.

For an isolated cell, the Hamiltonian can be written,

I Hc = 1Eoni,+ t, (a,, taj, .+a, .ai, aj,) +

ti a i, 01

I EC >i. ja + I (
I£, = j •i - (2)
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Here a;., is the annihilation operator which destroys a particle at site i (i=0,I,2,3,4) with

spin a. The number operator for site i and spin a is represented by ni,a. The on-site energy

for each dot is E0, the coupling between the iLh and jI" dot is rij, and the on-site charging

energy (the Coulomb cost for two electrons of opposite spin occupying the same dot) is I
EQ. The last term in the Hamiltonian represents the Coulombic potential energy for two

electrons located at sites i andj at positions Ri and Rj.
I-

For our "standard cell", on which the most of the numerical results reported here are

based, we obtain the values of the parameters in the Hamiltonian from a simple,

experimentally reasonable model. We take E0 to be the ground state energy of a circular

quantum dot with diameter D=10 nm holding an electron with effective mass P
m * = 0.067 m0 . The near-neighbor distance between dot centers, a, is taken to be 20 .n.

The Coulomb coupling strength, VQ, is calculated for a material with a dielectric constant

of 10. We take EQ=VQI(DI3). The coupling energy between the outer dots and the central

dot is t- to. , = 0.3 meV (i= 1,4), and the next-near neighbor coupling connecting the

outer dots, t', is taken to be t/1O (consisrent with one-dimensional calculations for I
reasonable barriers). The range of possible values of these parameters is explored 3
systematically below.

The interaction of the cell with the surrounding environment, including other neighboring

cells, is contained in a second term in the Hamiltonian which we write as H. ,. We solve

the time independent Schrodinger equation for the state of the cell, [WQ, under the

influence of the neighboring cells:

(Hcell+ Hc" En (3)I -

The spins of the two electrons in a cell can be either aligned or anti-aligned, with

corresponding changes in the spatial part of the wavefunction due to the Pauli principle.

We will restrict our attention to the case of anti-aligned spins here because that is the I
ground-state configuration; the spin-aligned case exhibits nearly identical behavior. The



I

Hanmltoman is diagonalized directly in the basis of few-electron states. We calculate

single pafucle densities. pi, from the two-particie ground-state wavefunction 0)

Pi XýTolna Y). (4)

and from the densities, calculate the resultant polarization P from Eq. (1).

To maintain charge neutrality, a fixed positive charge, p, with magnitude (21S)e is

assumed at each site. If cells had a net total charge then electrons in cells at the periphery

of a line of cells would tend to respond mostly to the net charge of the other cells. In a

semiconductor realization, the neutralizing positive charge would be provided by ionized

donor impurities and charge on the surface of metal gates.

C. Calculating the cell-cell response function.

To be useful in cellular automata-type architectures [11], the polarization of one cell must

be strongly coupled to the polarization of neighboring cells. Consider the case of two

nearby cells shown in the inset of Fig. (2). Suppose the charge distribution in the right cell,

I labeled cell 2, is fixed. We assume cell 2 has polarization Pi, and that the charge density

on site 0 is negligible (this means the charge density is completely determined by the

polarization). For a given polarization of cell 2. we can compute the electrostatic potential

at each site in ceil 1. This additional potential energy is then included in the total cell

Hamiltonian. Thus the perturbing Hamiltonian is

"i,,er = =l V ni. 5I iEC la,

where

S(6)

I
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is the potential at site i in cell m due to the charges in all other cells. We denote the

position of sitej in cell k as R a. and the single particle density at site] in cell k as pk.Them

,otal Hamiltonian for cell I is then

Heel' =H H'ee" ' (7)

The two-electron Schrbdinger equation is solved using this Hamitonian for various values -

of P,. The ground state polarization of cell 1. PI, is then computed as described in the

previous section.

Figure t2) shows the splitting between the ground state and first excited state of cell I as a

[unction of P2. (Actuaily. each state is an exchange-split pair of spatially symmetric and

anusymmetric states, but the splitting is hardly resolved at the energy scale shown here.)

The perturbation rapidly separates states of opposite polarization. The excitation energy U
for a completely polarized cell to an excited state of opposite polarization is about 0.8

meV for our standard ceUl. Figure (3) shows P1 as a function of P2 - the cell-cefl

response function. A very small polarization in ceii 2 causes cell I to be very strongly

polarized. As the figure shows, the polarization saturates very quickly to either P=+I or

P=- I. This bistable saturation is the br A's of the effects described in this paper. I

As discussed at greater length in reference [41, the abruptness of the cell-ceUl response I
function depends on the ratio of the kinetic energy coupling parameter, t in Eq. (2), to the

Coulomb terms in the Hamiltooman. The magnitude of t depends exponentially on both the

distance between the dots and the height of the potential barrier between them.

I
i
I
I
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I Ill. Hartree Self-consistent solution for many cells

In the analysis of the Drevious section. the two-electron eigenstates were caiculated for a

single cell. It is important to note that for the Hamiltonian employed, these are exact two-

particle eigenstates. This was possible because we could explicitly enumerate all possible

two-eiectron states and diagonalize the Hamiltonian in this basis set. We now want to

- analyze linear arrays of many cells. Exact diagonalization methods then become

- intractable because the number of possible many-electron states increases rapidly as the

number of electrons increases. We must therefore turn to an approximate technique.I
The potential at each site of a given cell depends on the charge density at each site of all

I oher cells. We will treat the charge in all other cells as the generator of a Hartr-type

potential and solve iteratively for the self-consistent solution in all cells. This

approximation, which we call the intercellular Hartree Approximation (ICHA), can be

stated formally as follows. Let IP be the two-electron ground-state wavefunction for cell

k. We begin with an initial guess for the densities. Then, for each cell we calculate the

I potential due to charges in all other cells using Eq. (6). Although the neighboring cells will

normally dominate, we do not restrict the analysis to near-neighbors only, but include the

effect of all other cells. For a cell k, this results in a perturbation of the isolated cell

Hamiltonian of Eq. (2):

17[Ct'" V Vni, (8)

1i E cell k, a

i The Schrodnger equation for each cell is now solved for the two-electron ground-state

eigenfunction:

i(fcll + Hcell N'k EO *ý. (9)

I From the ground state eigenfunctions we calculate the improved single particle densities.

I =asnj, (10)
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hP.e improved densities are then used in Eq. (6) and the system is iterated until I
convergence is achieved. Once the system converges, the many-electron energy, Etotl, is

computed from the sum of the cell eigen-energies using the usual Hawtree correction term

.o account for over-counting of the Coulomb interaction energy between cells:
k q

Etotal = - (11)

S~ >q,z•, Ik,- Rq,jI

It should be stressed that the ICHA still treats Coulombic, exchange, and correlation I
effects between electrons in the same cell exactly. The Hartree mean field approach is used 3
to treat scif-consistentdy the interaction between electrons in different cells [101.

It is relevant to point out that we do not require coherence of the many-electron I
wavefunction across the whole array of cells. All that is required to support this analysis is

that the wavefunction is coherent across a single cell. No information about the phase of

the wavefunction in other cells is relevant to the wavefunction in a given cell - only the I
charge densities in other cells need be known. 3

I
I
I
I
I
I
I
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I IV. Lines of Quantum Cells
Figure (4) shows schematically a line of two-electron quantum cells. The distance

between centers of adjacent cells is three times the near-neighbor distance between dots in

a single cell. If the polarization of the end cell is fixed, say to P=+1, a polarization will be

induced in the neighboring ceols. The question we address in this section is whether the

saturation is sufficiently nonlinear that the entire line of cells will be "locked in" to a

I positive polarization. If this occurs for physically reasonable values of the Hamiltonian

parameters, then Lines of cells can perhaps be viewed as "wires" which transmit

I :nformation. coded in the cell polarization, from one place to another.

A. Line saturation

Figure (5) shows the polarization as a function of cell number for a line of 10 cells. The

I polarization of cell 1 is set to values of P = 0.9, 0.8, 0.6, 0.2 and 0.02, and the ground state

i of the electrons in the remaining nine cells is calculated self-consistently usuig the [CHA

method described in the preceding section. The Hamiltonian parameters for these cells are

I those of the standard cell. These parameters yield a very bistable cell response. The result

is that even a slight polarization in the driver cell results in essentially complete

I polarization of all other cells in the line, as is clear in the figure. Figure (Sb) is a plot of the

I Icalculated particle densities on each site in the line of cells for the case when the driver

cell is polarized with only P = 0.02. This figure is not a schematic representation, but a

I plot of the calculated single-particle densities. The radius of each dot shown is

proportional to the particle density at the corresponding site. The squares around the cells

are aids to the eye only; the driver cell is indicated with a darker squar around iL

I .As the tunneling energies t and t' are increased, the two-particle ground state wavefunction

i in each cell becomes less localized in the antipodal sites - the kinetic energy term begins

to balance and eventually dominate the Coulomb term in the Hamiltonian. Figure (6)

I shows the polarization of the Line when t= 1.0 meV and t'=O. Figure (7) illustrates the case

I Uat s-4f- mUf a bml wm 9
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when r=.O meV and 1'0',O. kIhe poianzauon of the last cell is always slightly lower l

because it has only one near-neighbor.) Notice that in both cases, the polanzauon saturates

at a constant value, we denote Psa, several cells away from the driver cell. If the driver is

polarized at a value larger than P,,,, the polarization decreases in successive cells until it l

reaches Pu. If the driver is polarized at a value smaller than P,,,, the polarization

increases in successive cells until it reaches Par The value of Pint depends on the

physical parameters in the cell Hamiltonian, and on the distance between cells.

If the driver cell has a fixed negative polarization, then the line will polarize to a saturation

vaiue of "P 7. The unduiven line has two degenerate ground states of opposite

poianzatons. The perturbation of the driver essentially selects one of these states as the U
new ground state, although it also modifies it in the region near the driver. Since we can

change the signs of all polarizations, including the fixed drivers, and obtain another

ground state configuration (a mirror image of the original), we need here only consider

situations with a positive polarization driver cell.

Figure t8) shows the cell polarization for a line of c!'Is when the line "fails". The kinetic

energy parameters for this case are r=1.5 meV and t'=t/lO. Since the value of t is 1
significany larger than the Coulomb induced splitting between the energy of oppositely

polarized states (about I rneV), the bis -le response of the cells is very small. Thus. even

a completely polarized driver cell Lus to polarize the line. The polarization drops 3
precipitously to zero. I
Two important conclusions follow from these results. First, for a line of cells for which the

tunneling energies t and t', arie small enough to yield strong bistab?, behavior, a line of

cells acts lke a binary wire. That is, it robustly transmits a P=÷ I or; -I polarization from

one end to another. In fact it has the very attractive feature that it restores degraded signals

back to the signal rails (P_-±l). Secondly, the behavior of the line as a whole is

characterized by the saturation polarization, Ps;- If Psal is close to unity, the line funcumB

- to
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I very weil as a binary wire. If the individual cells are not strongly enough bistable, the

i value of P,,, will be significantly less than unity and the line of cells will be less effective

as a binarv wire. If the bistability is sufficientlv weak, Psat is zero. In the next section we

I examine P= as a function of the physical parameters which specify the cell Hamiltonian.

I B. Dependence of Ps, on physical parameters

For a long line of cells, all the cells sufficiently removed from the ends will have

Ipolarization Psw. The infinite line contains two degenerate ground states with P = ±PS45 .

We calculate Psal by considering a segment of an infinite line. Figure (9) shows a "target"

i cell with three neighbors on each side (more distant neighbors have a negligible influence

I on the target cell). In the ground state all these cells have the same polarization, Pay. We

solve for Psat iteratively using the following scheme: All 6 neighbors are set to a

I polarization corresponding to an initial guess. The resulting potentials on the sites of the

target cell are calculated and the two-electron Schr~dinger equation is solved for the

ground state of the target cell. The (induced) polarizatinn of the target cell is then

II calculated from the two-electron wavefunction. The polarization of the 6 neighbors is now

set to this calculated value and the process is iterated. The iteration converges to a fixed-

Spoint when all cells have the same polarization, Ps,. The saturation polarization

calculated this way is identical to that obtained by considering a long (e.g., twenty cell)

line and finding the polarization of the innermost cells.

I We focus on the dependence of the saturation polarization as a function of the physical

- parameters which enter the cell Hamiltonian (Eq. (2)). Figure (10) shows the variation of

Psat with the kinetic energy parameter t with t'=0/l. All other parameters are kept fixed.

I This is equivalent to changing the barrier height between the quantum dots. Higher values

of r correspond to lower barrier heights. As the figure illustrates, for values of t above

-- about I meV (a barrier height of roughly 100 meV for the standard cell), the saturation

polarization falls quickly to zero. The transition occurs near [= I meV because that is

roughly the energy splitting between the ground state and the excited state of opposite

I Lwa ai Sam= ~ a bMY w~inI
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polarization (see Fig (2)). When the kinenc energy gain in hopping to neighboring sites

balances this cost, the tendency of the cell to polarize is lost.

Figure (1i) illustrates the variation of PsW with a. the near-neighbor distance between I
quantum dots. As a is vaned, r and:' are kept constant. The interce~lular distance is always

3a. The variation of a then has principally the effect of changing the strength of the 3
Coulomb interaction between the cells and between dcts in the same cell. The larger a, the

weaker the Coulomb interaction and hence the weaker the bistable cell behavior.

Although we have focused on results for a parriculai "standard" ceil with the specific I
physical parameters stated above, the saturation behavior is clearly determined by the ratio

of the physical parameters, not their absolute values. Consider again the cell Hamiltonian

in Eq. k2). The value of E0 wil not affect the polarization behavior because it simply adds 3
a constant shift to the total energy. We set t'=t1O for the near-neighbor and next-near-

neighbor kinetic energy terms. The value of Psat is then determined by three values: the

kinetic energy parameter t, the site-site Coulomb energy parameter VQ/a, and the on-site

Coulomb term EQ. I
Let us examine what these three energy parameters correspond to physically. The energy t

is half the value of the splitting between the spatially syrnmetric and antisymmetric states 3
of a system of two quantum dots. It can also be considered as a hopping energy between

neighboring dots which lowers the total energy by allowing the wavefunction to spread

out spatially. The energy VQ/a is the Coulomb energy of two electrons separated by the

distance a (the near-neighbor inter-dot separation). The energy EQ is the Coulomb energy

of two electrons of opposite spin occupying the same quantum dOL It is roughly inversely {

proportional to the dot diameter [12].

Consider the three-dimensional parameter space spanned by these three physical energies

r. VQ/a, and EQ. Systems with the same ratio of : VQ/a : EQ2 have identical sawuration I

ILi a u ma 4m S *• , ,-" wa 1a 2
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Ibehavior. The locus of equivalent systems is a ray passing through the origin in parameter

ipace. Therefore, to explore saturation polanzation for the entire parameter space spanned

by these three physical parameters, it is sufficient to calculate Psai on the surface of a

sphere in the parameter space. This is shown in Fig. (12). The t axis has been scaled by a

factor of 10. The values of Psat arm plotted through the gray-scale map shown. The map is

I non-uniform and is chosen to accentuate the very abrupt transition between values of Psat

near unity and values very close to zero.

Figure (12) shows that the saturation behavior is not limited to an "island" in the

Hamiltoruan's parameter space but is "coninnental". Further. for "most" of the parameter

space, Psat is very close to 1 or 0. The transition is quite abrupt. A detailed examination of

the interplay between on-site charging effects anv, - -ar-neighbor effects awaits further

I study.

I
I
I
I
I
I
I
I
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V. Discussion

ThI e results presented suggest that the lines of quantum cells discussed here are indeed I
capabie of forming binary wtres in the following sense. Information is encoded in the

Polarizauon of individual cells. Say a bit value of I is represented by a polarizaton P=+1

and a bit value of 0 is represented by a polarization of P=- 1. S uppcse the polarization of an

dnd cell is fixed to 1 (perhaps electrostatically) and the line of cells is allowed to relax to

its ground state. The ground state will be one for which all the cells have polarization I I
(bit value 1). If the end cell is switched, and the line again allowed to relax to its ground

state, all the cells will switch to P=-l (bit value 0). This mechanism transports

;nrormanon, but not charge, from one end of the wire to another. It has the additional

feature that inputs with polarization less than one, but still positive, will be "reset" to be 1.

Similarly, degraded negative input polarizations will be reset to -1. The snong nonlinear I
bistable response of the coupled-cell system performs a role similar to gain in 3
conventional digital devices, constantly restoring signal levels. I
Note that in this scheme we rely on the ground-state configuration of the system - not the

transient response. We assume inelastic processes are sufficient to relax the system to its

new ground state after the input is changed. The wire "transmits" information in the sense

nat after this relaxation has occurred, the new ground state is one in which the output end I
of the wire matches the input end.

In reference [4] we discuss the implementation of logical gates using the interacting i
quantum cells analyzed here. AND gates, OF. gates and inverters have all been designed

using these ideas.

To function well. the cclls need to be small enough that the Coulomb interaction between

electrons in different dots is significant. Additionally, the effective barrirs to tunneling

between dots must be large enough that the kinetic -,-T'g" ad%,'nrtge of spreading out the I
wavefunction does not overcome the Coulombic a4vantage of keeping the electrons in

ad MMM"mmu .in" b.WY a uyuu 14
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I ,nnpodal sites. As the results of Section [VB made clear, however. the relevant range of

phlvysical parameters is not a small, carefully balance set.

Fabrication of such coupled dot structures surely represents a significant challenge, but the

I dimensions involved make it possible to conceive of semiconductor realizations using

nanolithographic techniques presently being developed. Setting and reading the individual

cell states at input and output ends involves the challenging task of sensing the presence of

a single electron.

I The theoretical analysis in this paper is a zero-temperature treatment. At a non-zero

temperature, entropy will become important. The excited states of a line have a much

I reater degeneracy (hence entropy) than the ground state. For long enough lines, this

means that the thermodynamic expectation value of the polarization will decay as the

distance from the end driver cell increases. These effects will ultimately limit the size of

usable binary wires and the operating temperatures feasible. Nevertheless, if the size scale

can be sufficiently reduced (our standard cell is relatively large), more practical operating

temperatures could be obtained.

In conclusion we have examined the behavior of lines of interacting quantum-dot cells.

The bistable saturation in the cell-cell interaction results in "binaly wire" behavior in

which information, encoded in the cell polarization, can be robustly transmitted from one

end of a Line to another.
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FIGURE CAPTIONS m

FIGURE 1. Schemantc of Quantum ceil. The geometry of the cell is shown in a). The

solid lines indicate tunneling between the quantum dots. The tunneling energy between

.he inner dot and rie out,..r dots is t. and the tunneling energy between adjacent outer

dots is t'. The Coulomb repulsion between the two electrons which occupy the cell m

results in ground-state configurations with the electrons aligned in the two onentations p
shown in b). The polarization defined by Eq. (1) takes the values I and -I for these two

configuranons. 3
FIGURE .- The elgenstate enertes for cell 1 as a funcuon of the polarization of

adjacent cell 2. The poianzaton of the eigenstates is indiciLed by the inset diagrams.

The iow energy state is always the one with the same polarization as the "driver" cell 2. I
Slight exchange splitting kbetween the spatially symmetric and antisyrnnmetric states) is

evident for very small values of P-.

FIGURE 3. The cell-cell response function (after reference [3]). The induced cell l

polarization P1 is plotted as a function of the neighboring cell polarization P-. The

soLid line shows the polarization ot the spin-antiasymmetric state and the dotted line

shows the polarizaton of the (nearly degenerate) spin-symmetric state. I
FIGURE 4. A linear array of interacting cells. Each cell holds two electrons. Hopping

between cells is assumed to be completely suppressed,

FIGURE 5. The response of a Jine of cells. The polarization of cell I (shown in (b)

with a darker outline) is fixed and the ground-state polarization induced in the Line of I
cells is calculated. The plot shows the induced polarization for a driver polarization of

P = 0.9, 0.8, 0.6, 0.4. 0.2 and 0.02. For the case of the weakest driver polarization, P =

0.02, the charge densities on each site are shown in b). The diameter of each dot is

proportional to the charge density on that site. The Haimitoman parameters used hem
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are those of the "'standard cell" discussed in the text. The result shows that even a slight

polarization in a driver cell induces nearly complete poiarization in the line of cells.

FIGURE 6. The response of a line of cells for a different value of tunneling energy

I parameter. As in Figure 5. the polarization of cell I is fixed and the ground-state

I polarization induced in the line of cells is calculated. The plot shows the induced

polarization for a driver polarization of P = 0.9, 0.8, 0.6, 0.4, 0.2 and 0.02. The model

I cells here differ from the standard cells used for Figure 5 in that the tunneling energy r

is 1.0 meV and t' is negle'ted.The result shows that even a slight polarization in a

driver cell induces a polarization in the line of cells but that the polarization saturates at

I a value Psar (here about 0.85).

I FIGURE 7. The response of a line of cells for a different value of tunneling energy

parameter. The polarization of cell 1 is fixed and the ground-state polarization induced

I in the line of cells is calculated. The plot shows the induced polarization for a driver

polarization of P = 0.9, 0.8, 0.6, 0.4, 0.2 and 0.02. For the case of the weakest driver

I polarization, P = 0.02, the charge densities on each site are shown in b). The diameter

of each dot is proportional to the charge density on that site. The model cells herm differ

:rom the standard cells used for Figure 5 in that the tunneling energy r is 1.0 meV and

I r=t/lO. The result shows that even a slight polarization in a driver cell induces a

polarization in the line of cells but that the polarization saturates at a value P. (here

about 0.7) which characterizes the response of the line.

I FIGUTRE 8. Failure of a driver cell to polarize the line. In this case the tunneling

I parameters are chosen so that t = 1.5 meV and r' = t/10. The result is that the kinetic

energy term in the Hamiltonian (Eq. (2)) overwhelms the Couiombic terms. A driver

I cell which is completely polarized then induces only a small polarization in its

neighbors. and the polarization decays quickly down the line. The charge densities are

shown in b)
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9GURE 9. Schematic view of cell geomety usea in self-consistent calculation of the

polanzaton of an infinitety long chain of cells.

FIGURE 10. The saturatiun polarization for an infinite linear chain of cells as a 3
function of the tunneling parameter r. Other cell Hamiltonian parameters are fixed at

the "standard cell" values. .I

FIGURE 11. The saturation polarization for an infinite linear chain of cells as a

function of the near-neighbor site distance a (see Figure 1). Other cell Hamiltonian

parameters are fixed at the "standard ce!l" values.

FIGURE 12. The values of Ps for the parameter space spanned by the parameters in I
the Hamiltonian.
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ABSTRACT

3Model quantum dot cells are investigated as potential building bk*:ks for
quantum cellular automata architectures. Each cell holds a few electrons
and interacts Coulombically with nearby cells. In acceptable cell designs,
the charge density tends to align along one of two cell axes. Thus, we can
define a cell "polarization" which can be used to encode binary
information. The polarization of a cell is affected in a very nonlinear
manner by the polarization of its neighbors. We quantify this interaction by
calculating a cell-cell response function. Effects of non-zero temperature
on the response of a model cell are investigated. We also examine the
effects of multiple neighbors on a cell and discuss programmable logic gate
structures based on these ideas.

PACS: 73.20.Dx, 85.90.+h, 71.90.+q
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I. Introduction I
For many vears, the size of miucroelectronic devices has been shrinking, and this has led to3

faster, denser circuits. Despite these improvements, the basic computing paradigm has

remained virtually unchanged because device operation has been largely unchanged apart I
from re-scahing. There is now much interest in extremely dense device arrays forming

locally interconnected architectures like cellular automata (CA) II] and cellular neural

networks [2]. Such architectures could lead to changes in device structure of a less

evolutionary and more revolutionary nature.

At the same time, many researchers have oeen investigating ways to use quantum

structures as electronic devices. In the course of such research, a great deal has been I
learned about the behavior of electrons in very small structures. Because of the size of the

structures involved, an outstanding difficulty is providing a scheme in which one of these

quantum devices, which typically carry nanoamperes of current, could be used to drive

several other similar devices. In addition, the capacitance of the wires needed to

interconnect such structures would tend to dominate their behavior. Therefore, locally I
connected architectures like CA's may be an attractive paradigm for implementing

quantum device architectures f31.

CA architectures composed of nanometer-scaled quantum devices which are coupled 1
through the Coulomb interaction (no current flows between devices) have been proposed

by the authors elsewhere (4-6]. We call such architectures quantum cellular automata

(QCA). The QCA contains an array of quantum-dot cells which are connected locally by 1
the interactions of the electrons contained within them. The quantum state of each multi-

dot cell encodes the "logical" state of that cell. For this reason, each cell should ideally

have exactly two stable states, since this will allow direct encoding of binary information

[7]. Such two-state cells need also to exhibit bistable saturation to ensure that noise or

small geometric variations do not overwhelm the signal. I
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To funcuon as a CA. the state of each cell should be dependent on the states of its

neighbors. In this paper. .,e compare the ceil-cell coupiing and bistable saturation of

i severai different quantum cell designs which rmght form the basis of quantum cellular

I automata. All of these designs have certain characteristics in common: a few (typically

four or five) quantum dots connected by coupling coefficients and populated by a total of

one to three electrons. In these cells the required interaction between neighbors is caused

by the mutual Coulombic repulsion of the electrons contained in the cells. We use a very

simple model of each cell, neglecting details relating to exactly how the quantum dot

I structures are realized, but focussing on the charge distribution among the dots and the

Coulomb coupling between cells. We define a cell-cell response functnon which

I characterizes the interaction between neighboring cells.

In the next section we will introduce the theoretical model of the "standard cell", on which

much of the work of references 4, 5, and 6 is based. It is the most thoroughly investigated

I cell design because it displays strong bistable saturation. We discuss the model

I Hamiltonian used for the cell, the method used to calculate the cell-cell response function.

and the effects of non-zero temperature. Section [II compares various other cell designs.

I Among these are different geometric arrangements of the quantum dots, one and three

electron cells, and continuous quantum dashes. In Section IV, we extend our results to

include the effects of multiple neighbors on a cell. We show that such effects in a system

I with three nearest neighbors can be thought of as majority voting logic. We show how this

behavior can be used to implement programmable logic gates, and then show other

possible implementations for dedicated AND and OR gates. A discussion and conclusion

I follow in Section V.

I
I
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I

II. A Model Quantum Cell

The model "standard cell" design. shown schematically in Fig. (la), consists of five

quantum dots located at the corners and the center of a square. Tunneling occurs between

the central site and all four of the outer sites (near-neighbor tunneling) and to a lesser I
degree between neighboring outer sites (next-near-neighbor tunneling). It is assumed that

the potential barriers between cells are high enough to completely suppress intercellular

tunneling. The cell is occupied by a total of two electrons hopping among the five sites;

these electrons tend to occupy antipodal outer sites within the cell due to their mutual

electrostatic repulsion (see Figure 1(b)). ,

We will show that these two stable states are degenerate in an isolated cell, but an

electrostatic perturbation in the cell's environment (such as that caused by neighboring

cells) splits the degeneracy and causes one of these configurations to become the cell

ground state. Altering the perturbation causes the cell to switch between the states in an

abrupt and nonlinear manner. This very desirable bistable saturation behavior is due to a

combination of quantum confinement, Coulombic repulsion, and the discreteness of I
electronic charge.

A. Cell polarization

Since Coulomb repulsion causes the electrons to occupy antipodal sites, the ground state I
charge density may have the electrons aligned along one of the two diagonal axes shown

in Fig (lb). We therefore define the cell polarization, a quantity which measures the extent

to which the charge density is aligned along one of these axes. The polarization is defined

as

(P + P3)- (P- + P)

p0 + p1 + P2 + p3 + p4  I

where pi denotes the electron probability density at site i. As in Fig. (Ib), electrons I
completely localized on sites 1 and 3 will result in P=l, while electrons on sites ' and 4
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II

icld P=-l. An isolated cell would have a ground state which is a linear combination of

:.'ese two states and would theretore have a net polarization ot zero t81.

B. Model cell Hamiltonian

We employ a simple model of the quantum cell which uses a tight-binding Hubbard-type

I Hamiltonian. We represent the quantum dots as sites, ignoring any degrees of freedom

"internal to the dot. The Hamltonian for a single isolated cell can be written as:

Scell 11 n + : t + at a.+IO = E.:'ni. n . t,.~a .a ioa~ io
-- • , tl~i, o lo

, ' " ,>j•.o' Ri-R l .(2)

Here aija is the annihilation operator which destroys a particle at site i (i=0,1,2,3,4) with

spin a. The number operator for site i and spin o is represented by ni,. E0 is the on-site

energy for each dot, tij is the energy associated with tunneling between dots i and j, and

EQ Is the on-site charging energy (the purely Coulombic cost for two electrons of opposite

spin to occupy the same dot). The last term in (2) represents the Coulombic potential

I energy due to electrons on the i" and j" sites at positions R, and AR. VQ is an electrostatic

parameter fixed by fundamental constants and the dielectric constant of the material used

to form the dots.

I For the cell described above we use values of the parameters in the Hamiltonian based on

a simple, experimentally reasonable model. We take E0 to De the ground state energy of a

circular quantum dot of diameter 10 nm holding an electron with effective mass

I = 0.067 m0 . The near-neighbor distance between dot centers, a, is taken to be 20 nm.

The Coulomb coupling strength, VQ, is calculated for a material with a dielectric constant

I of 10, and EQ is taken to be VQ,'(D13) [91. The coupling energy between an outer dot and

the central dot is t - to, i = 0.3 meV (i= 1,2,3,4). and the next-near neighbor coupling
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c:onnecting the outer dots, r'. is taken to be t/1O (consistent with one-dimensional i
calculacions for a barner height of 150 meV) [ 101

The spins of the two electrons in the cell can be either parallel or andparailel. We consider

here. the case of electrons with antiparallel spins, since that is the ground state of the cell. U
Calculations with electrons having parallel spins yield qualitatively very similar results.

To maintain charge neutrality in the cell, a fixed positive charge p , corresponding to a

charge of (2/5)e, is also assumed on each site. In a single isolated cell this just

renormalizes E0, but the fixed charge is important when stmulating systems with more

than one cell. If each cell had a net negative charge, then eiectrons near the edges of a

group of cells would respond mostly to the net negative charge of the other c,-Is. In a I
sermconductor realization, the fixed positive charge would likely be provided by ionized

donor impurities and charge on the surtace of metal gates.

The interaction of a cell with its electrostatic environment (including neighboring cells) is

contained in a second Hamiltonian term which we write as Hi.n We solve the time-

independent Schr6dinger equation for the nth eigenstate of the cell, [TY), under the

influence of the neighboring cells: I
.Hr cell EI3

( + i ) t') = E0 NQ. (3)

The total Hamiltonian is diagonalized directly in the basis of 2-particle site kets. We

calculate the single-particle density, pi, from the two-particle ground-state wavefunction

F0) by finding the expectation value of the number operator for site i:

Pi to cal nicate . (4)

We can then use these densities to calculate the cell polarization P as in Eq. (1).
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,I
I C. Calculating the cell-cell response function.

To be useful in cellular automata-type arcn itectres. the state of - cell must be strongly

influenced by the states of neighboring cells. To demonstrate how one of these cells is

influenced by the state of its neighbor, consider the two cells shown in the inset to Fig. (2).

The cell centers are separated by a distance of 3a = 60 nm. We assume cell 2 has a given

I polarization P2 and that the electron density on the central site is negligible. This means

that the charge density is completely determined by the cell polarization. For the

,.onesponding electron density on each site of cell 2, we calculate the electrostatic

potential at each site of cell 1. This additional potential energy is then included in the

Hamiltonian for cell 1. Thus the perturbing Harrultonian component is:

II i

I I E cell 1,0

where!k
Vm .. (6)

:s die potential at site i in cell m due to the charges in all other cells. We denote theI position of site] in cell k as R•., and the electron density at sitej in cell k as p>- The total

Hamiltonian for cell 1 is then
= i.4c¢ll

H'cel = f/Cell + H • . (7)

The two-electron time-independent Schr6dinger equation is solved using this Hamiltonian

for a series of values of P2 in the range [-1, +1]. The ground state polarization of cell 1, PI,

is then computed for each value of P- as described in the previous section. Thus, we can

I plot the induced polarization of cell 1 as a function of the polarization of cell 2. This

-unction PI(P 2 ), which we call the cell-cell response function, is one measure of how well

a cell will operate in a quantum cellular automaton architecture.

I
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Fig. 2) shows the cell-cell response function for the standard cell. The highly nonlinear I
nature of the response indicates that a small polarization in cell 2 causes a very strong

polarization in its neighbor, cell 1. The figure also sh-ws that the polarization of ceil I

saturares very quickly to a value of +1 or -1. This bistable saturation is the basis of the

quantum cellular automata since it means that we can encode bit information using the cell

polarization. We assign the bit value of I to the P=+lI state and the bit value -i to the P=-- I
state. Since the cell is almost always in a highly polarized state (IPI =_ ), the state of the

cell will be indeterminate only if the -lectrostatic environment due to other cells is

perfectly symmetric.

Hi-ig. 23) shows the lowest tour eigen-energies of cell 1 as a function of the polarization of

cell 2. This shows that the perturbation due to the polarization of cell 2 quickly separates

the states of opposite polarization. For a completely polarized standard cell, the excitation I
energy from the ground state to the first excited state with opposite polarization is about

0.8 meV. This corresponds to a temperature of about 9K.

The abrupmess of !he cell-cell response function depends on the ratio of the tunneling H
energy, t in Eq. (2), to the Coulomb energy for electrons on neighbonng sites. The

magrutude of the tunneling energy depends exponentially on both the distance between

dots and the height of the potential barner between them. Fig. (4) shows the cell-cell I
response function for different values of the tunneling energy r. The switching becomes

more abrupt as t decreases. Of course, if r goes to zero, the tunneling would be completely

suppressed and no switching would occur. Extremely small values of t would similarly

slow the switching time. For t=0.3 meV, the standard cell value, we estimate the tunneling

time as 2 psec.

II
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I 3D. Non-Zero Temperature Cell-Cell Response

We extend the calculation of the cell-cell response function to nonzero temperatures by

calculating the thermal expectation value of the electron density at each site of the cell.

h ( k9T )

I Evaluating the thermal average requires knowledge of the excited states of the cell as well

as the ground states. Using the results of Eq. (8), the polarization of the cell can be

calculated as before using Eq. (1). The results of such a calculation for the standard cell

I (with the next-near-neighbor coupling t'=01 are shown in Fig. (5). The curve for T=-) is the

same as in Fig. (2). The noniinearity of the response degrades as the temperature

I increases. For temperatures up to 4.2 K, the response is good, but for higher temperatures

it would probably be unacceptable for use in a QCA.

Note that this maximum operating temperature will increase as the size of the cell

I decreases. Thus, although a 20 nm design rule requires cryogenic temperatures for

i satisfactory operation, the design scales to smaller sizes easily and a much smaller.

possibly macro-molecular implementation I I I would work at room temperature.

I
I,I
I

I
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III. Alternative Quantum Cells I
While the cell described above has demonstrated an excellent cell-cell response. there is

no reason to discount other possible cell designs. Slight modifications to this cell give rise

to a family of similar cells whose behavior can provide insight into the nature of the I
system.

In looking for other model cells, there are several approaches we can take. The most

obvious of these is to alter the number of sites and their geometric arrangement.

Altematively, the cell occupation can be altered. Finally, tunneling between the

intracellular sites can be. increased, decreased, or effecuvely eliminated by varying the

potential barriers between the sites. I
A. Four quantum cells

In this section we will investigate the cell-cell response of four different quantum cells.

While these four are representative of the sort of cells one might consider, they in no way I
exhaust the study of new cell designs.

The first cell, included mainly as a standard by which to judge the others, is the original

cell described above with t=0.3 meV. This will be called cell A. Next will be the same cell I
with no tunneling between the outer neighbors W' = 0). We will refer to this as cell B.

Cell C omits the presence of the central site and allow tunneling only between the four

outer sites. Finally, cell D inhibits tunneling even further, allowing it only between sites I 3
and 2 and between sites 3 and 4. Schematic diagrams of these four cell designs are shown

in Fig. (6a).

In a semiconductor realization of these cells, the minimum spacing between nearest I
neighbor sites will be limited by the fabrication technology. For this reason, these cells are

designed with a constant 20 nm design rule (the nearest neighbors in each cell are 20 nm

apart). While this makes cells C and D smaller, it is the most physically reasonable way to
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I compare their operanon. The spacing between interacting ceils is set at three times the

near-neighbor dot spacing.

It is possible to consider cell B as an approximation to cell A which neglects tunneling

I between outer neighbors. In reality there will always be a certain amount of tunneling

between outer sites, but this tunneling can be made arbitrarily small by selectively

increasing the potential barriers between the outer sites. The same increase in potential

I barriers would be needed to suppress horizontal tunneling in cell D.

I Fig. (6b) shows the cell-cell response functions for these four cells. This figure shows that

cells A and B have very similar responses. and both are superior to cells C and D. Thus.

I elimination of the central site as in cells C and D degrades the response. This leads us back

i to the five-site cell we originally considered. Since the complete suppression of next-near

neighbor coupling as in cell B might introduce additional fabrication difficulty with little

improvement in the cell response, cell A may be the most practical of these four cell

designs.I
B. One and three electron cells

A s aii alternative to changing the geometry of the cell, we can also alter the electron

I occupancy. Fig. (7) shows the cell-cell response function for cell A occupied by a single

electron, and Fig. (8) shows the response for the same cell with three electrons (two

I parallel spins, one antiparallel). These nearly linear response functions never become

strongly polarized, even for fully polarized neighbors. This indicates that such cells would

perform very poorly as the basis of a quantum cellular automaton [121.

I C. Quantum dashes and double-wells

I Proposals have been made for one-electron "'quantum dash" cells which appear

qualitatively similar to the cells we have discussed here [ 131. In this section we investigate

the cell-cell response function of single-electron quantum dashes and compare this to a
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very similar double quantum well to show how important the discreteness of electronic I
charge is to the non-iineanty of the response functions seen in the previous sections.

Since these cells are of a more spatially continuous nature than cells previously

considered, the site representation is no longer useful. Each cell will be modeled as a one-

dimensional hard-walled square well of width 30 nrn. The two cells are separated by a

distance of 20 nm. These dimensions are similar to those of the cells described above. We

use the finite element method to solve the single-electron time-independent Schrtdinger I
equation for each one-electron cell. The geometry used to calculate the cell-cell response

function is shown schematically in Fig. (9a).

Since these cells have only a single axis along which to distribute the electronic charge, a

new definition of polarization must be introduced. The new definition, which takes into

account the continuous nature of the probability density, is: I
0 L/2

f p (x) dx- f p (x) dx
p _- / 2  L ) (9)

f p(x) dx
0

Because of its continuous nature, the charge density in cell 2, the "driver" cell is no longer 3
uniquely determined by specifying the cell polarization. We therefore fix the charge

density to be constant in each half of cell 2. I

The cell-cell response function calculated for such a system is shown in Fig. (9b). As this

figure shows, the response is quite linear and cell 1 is virtually unpolarized even for a fully

polarized neighbor. The electron probability density as a function of position for cell 1

with a fully polarized neighbor (P2 =l) is shown in Fig. (9c). The probability density is

nearly symmetric about the center of the cell as we would expect for such a small

polarization.
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A related cell, the double well, is shown schematically in Fig. (1Oa). It is a quantum well

of the same dimensions as in Fig. (9a), but the potential in the middle third of the well has

been raised by 150 meV. This cell is also veryv similar to half ')f cell D from the last

I section, so we would expect its response to be much better than that of the simple quantum

dash.

The calculated response, shown in Fig. (10b), is indeed much better than that of Fig. (9b).

I Its nonlinearity and saturation properties are very similar to those of cells C and D in Fig.

(6b). This response shows that one-electron cells can be used to provide the required

nonlinear response, but it is also possible to view each pair of these cells as a single 2-

Ielectron ceil. which becomes geometrically very similar to cell D of Fig. (6a).

i The fact that such a seemingly small change in the nature of the cell should cause such a

profound change in the cell-cell response function is linked to the fact that electron charge

I is discrete in regions surrounded by high potential barriers. That is to say, the expectation

value of the number operator approaches an integer value as the region becomes more and

I more isolated by the potential barriers surrounding it f 14]. Therefore, almost the entire

i wavefunction will become localized in one half of the cell if a small asymmetry in the

electrostatic environment is introduced. This fact is demonstrated in Fig. (10c), which

shows nearly ail the charge density in the right half of the cell. Since there is no bamer in

the middle of the quantum dash to isolate the top and bottom of the cell. no such

I localization behavior is seen there and the charge density is always nearly symmetric

about the center of the well.

I
I
I
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IV. Multiple Neighbor Interactions i
Thus far. we have only considered the interacuon between a cell and a sin2le neighboring

cell. The natural extension of this is to investigate the effects of multiple neighbors on the

state of a cell. Since this implies considering a system which contains several cells and I
therefore several electrons, we cannot use the direct solution method described earlier for

treating a single cell. For the analysis of such systems, we treat the physics within each

cell as before, including exchange and correlation effects exactly. The intercellular

interaction is treated self-consistently using a Hartree approximation. This method, called

the Intercellular Hartree Approximation (ICHA) is detailed in references 5 and 6.

Fig. 11 shows an arrangement of standard cells such that one cell has multiple neighbors. I
The charge densities of the cells on the top, left, and bottom are fixed, while those of the

middle and right cells are free to react to the fixed charge. In an actual QCA, the states of

the neighbors would not be fixed; they would be driven by the results of previous

calculations or come from inputs at the edge of the QCA. I
In the specific state shown in Fig. 11, two of the fixed neighbors are in the "one" state, and

the other is in the "zero" state. WVhen the ICHA is used to determine the ground state of

this system. we find that the states of the center and right cells match the state of the

majority of the fixed neighbors. We refer to this feature of the cell behavior, which is true

or all combinations of the three inputs, as majority voting logic. Note that Figures 11, 12,

and 13 are not schematic, but plots of the self-consistent electron density on each site. The

radius of each dot is proportional to the single-electron density at that site. I

While majority voting logic behavior is valuable by itself, its potential functionality is

shown by a particular interpretation of the three inputs. In Fig. 12, we have singled out one

of the three and called it the program signal. Note that any one of the three neighbors I
could serve as the program signal, but the one case we are showing (with the program line

coining in from the left) is sufficient for illustration purposes. The four systems shown
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:nclude all possible combinauons of signals on the two non-program lines. Since all four

.\stems i Fig. 12 show the program line ,-i the 'Xkne' "tate. the central ce.tl can only he

zero i the other two inputs are both zero. The system thus realizes the truth table of the

OR operation. Likewise, if the program signal is zero, the result is zero unless both of the

other inputs are one. This is a realization of the AND operation.I
By interpreting any one of the inputs as a program line, we have implemented a

programmable AND/OR gate. The nature of this gate (AND vs. OR) is defined by the state

of the program line, and the other two inputs are applied to the gate thus defined.

The fact that the nght-most cell always matches the central ceil means that the result of

this calculaton can be propagated away from the gate, down a QCA "wire" [151, and

eventually serve as the input to subsequent gates. It is necessary to distinguish between

driving neighbors and driven neighbors in this sv stem. Since the right-most cell is free to

react to the states of its neighbors, it is a driven neighbor. Its state will always match that

of the central cell, so only the three driving neighbors are involved in the majority voting.

Of course, once the signal is propagated away from this gate, the outgoing cells are being

driven and can be used as driving neighbors for subsequent gates.

A dedicated, non-programmable, implementaton of the AND gate is shown in Fig. 13.

This system has only two driving inputs: there is no program signal. TIhe role previously

played by the program signal, biasing the central cell so it can only be in the one state if

both of its neighbors are. is performed by slightly enlarging the two quantum dots on sites

I and 3 in the central cell (161. This means that the ground state of the isolated cell is no

longer a non-polarized state. the cell is biased toward the zero state and can only be

persuaded to enter the one state if both of its driving neighbors are one. Again. the signal

propagates away to the right and can be used to drive subsequent gates. A dedicated OR

gate can similarly be implemented by enlarging sites 2 and 4, biasing the cell toward the

one state. It will only be in the zero state if both of its driving neighbors are zeros also.
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V. Discussion

With the above results, we have demonstrated several quantum-dot cells suitable for

miplementing a quantum cellular automata architecture. Examination of the cell-cell

response function shows that for appropriate cell designs, the state of a cell is influenced I
very strongly by the state of its neighbors. The highly nonlinear response of the cell

suggests that a signal that has become degraded by noise will be restored to full

polanzation by subsequent cells in the array [15]. In this way, the bistable saturation of the

quantum cell is analogous to the gain in a conventional digital device. I
We have assumed throughout that the many electron system is in its ground state. In

general, a system will start in the ground state and then be driven into an excited state by I
externally changing the states of input cells near the edge of a QCA array. Inelastic

processes, which are usually very detrmnental to the operation of quantum devices, then

drive the system back to a new ground state corresponding to the new inputs. The details

of the temporal evolution of the many-electron system as it relaxes to its ground state are

very complicated. In the QCA scheme, we re!y on the properties of the system ground I
state and not the details of the relaxation process for doing the computation. This idea of
.computing with the ground state" and the related concept of "edge-driven" systems are

discussed more thoroughly in reference 5.

The behavior of lines of these cells, the most basic (and important) components of a

quantum cellular automaton, is discussed in reference 6. The results show an excellent

example of the restoration of full signal strength after degradation by noise. In addition, it I
shows that the particular set of parameters we chose in section .1iB is not critical; there is a

wide range of parameter values for which the cells transmit information from one cell to

another.

Clearly, fabrication of these devices presents a major challenge in the realization of QCA

devices, but semiconductor realizations of such systems using new nanolithographic
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I
5 :echniques should be possible. It is also possible that future realizations of these cells will

.•e on a macromolecular basis. Another challenge, sensing the presence or absence of a

single electron without disturbing the system, necessary for reading the output state of a

QCA device, has been successfully addressed [171.

In conclusion, we have explored the interaction of neighboring quantum-dot cells. We

have defined the cell-ceUl response function which characterizes the non-linearity of the

I coupling between cells and thus determines suitability of a particular cell design for

quantum cellular automata implementations. Several cell designs that exhibit the required

I nonlinear response and bistable saturation have been examined. Temperature effects

I degrrade cell performance but analysis in this simple model suggests that operation at 4.2K

should be within the reach of semiconductor implementations. When a cell has several

I5 neighbors, its state is determined by the state of the majority of the neighboring cells. This

majority voting logic make possible the construction of programmable AND/OR logic

I gates as well as dedicated AND and OR gates.
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FIGURE CAPTIONS I

FIGURE 1. Schematic of the basic tive-site cell. (a) The geometry of the cell. The 3
tunneling energy between the rruddle site and an outer site is designated by t, while t' is

the tunneling energy between two outer sites. (b) Coulombic repulsion causes the I
electrons to occupy antipodal sites within the cell. These two bistable states result in

cell polarizations of P=+ I and P=- I (see Eq. ( 1)). I-
FIGURE 2. Cell-cell response function for the basic five-site ceils shown in the inset.

This shows the polarization P, induced in cell 1 by the fixed polarization of its

neighbor, P,. The solid line corresponds to antiparallel spins, and the dotted line to

parallel spins. The two are nearly degenerate, especially for significantly large values of .

P1. I

FIGURE 3. The lowest four eigenstate energies of cell I induced by the polarization of

cell 2. The insets show that the lowest two energy states always correspond to the same

polarization direction as in the driver. Slight exchange splitting effects between

spatially symmetric and spatially antisymmetric states breaks the fourfold degeneracy

for very small values of P2 . I

FIGURE 4. The cell-cell response function of the basic five-site cell for v.arious values

of the parameter t in Eq. (2) (after reference [4]). The induced polarization in cell 1 is

plotted as a function of the polarization of its neighbor, cell 2. The curves correspond to

.=0.2 meV (solid line), t--0.3 meV (dotted line), t--0.5 meV (dashed line), and t=0.7 3
meV (dot-dashed line). Note the horizontal axis only shows P2 in the range [-0.1 ,+0. 1].

FIGURE 5. The ceHl-cell response function for the standard cell with t'=0 at various

temperatures. The response degrades as temperature increases. Above 4.2K, the

response would be unacceptable for use in a QCA. This maximum operating
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temperature is highly dependent on the physical size of the cell: molecule-sized cells

".,ouid behave in a satisfactorv manner up to room temperature.

FIGURE 6. Four geometric variations on the simple model quantum cell. (a)

I Schemauc diagrams of the four cells. Cells C and D occupy less area, but all four cells

are drawn with the same minimum spacing between neighbors. Cells B and D will

require potential variation between the sites to selectively inhibit tunneling. (b) The

ceLl-ceU response function for each of these cell designs. Cell B has the best response,

but the improvement over A is small.

FIGURE 7. T'e cell-cell response function for the basic five-site cell occupied by a

single electron. The weak response indicates that such a cell is unsuitable as the basis of

a QCA.

FIGURE 8. Cell-cell response function for the basic five-site cell occupied by three

electrons. Such a cell is also unacceptable as the basis of a QCA.

FIGURE 9. The "quantum dash" as a QCA cell. (a) A schematic diagram of the

cellular arrangement. The length and spacing is similar to that of the basic five-site cell

;n Fig. (la). Each cell is modelled as a one-dimensional infinite square well. The cell-

cell response is shown in (b). Note that the vertical axis only shows P2, over the range [-

0.1,+0.11. (c) The one-dimensional charge density in cell 2 for a fully polarized

I neighbor (P= 0). The nearly symmetric charge density yields a very low polarization.

FIGURE 10. The double well as a QCA cell. (a) A schematic diagram of the cellular

arrangement. The total dimensions are identical to those of Fig. (8). The middle third of

I each cell contains a 150 meV barrier to isolate the top and bottom of the cell. (b) The

ceil-cell response function for such an arrangement. Note that the vertical axis now

shows P, over the range 1-1.0, +÷1.0]. (c) The one-dimensional charge density in cell 2

i
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I

for a fully polarized neighbor (P I= 1). The highly asvmmetric charge dcnsity results in a I
cell that is almost completely poianzed. I

FIGURE 11. Majority voting logic. The states of the center and right cells are always

the same as the majority of the three fixed neighbors. The cells with heavy borders have

fixed charge densities. These are not schematic diagrams; they are the actual results of

the ICHA solution of the ground state charge densities in this system. The diameter of

each dot is proportional to the charge density on that site.

FIGURE 12. The programmable AND/OR gate. The program line is set to one in each

system, so the gate is displaying OR logic. All four combinations of the non-program

line inputs are shown. The cells with heavy borders have fixed charge densities. Any I
one of the three inputs could be the program line; the left cell is 10ot special. These are 3
not schematic diagrams; they are the actual results of the ICHA solution of the ground

state charge densities in each system. The diameter of each dot is proportional to the

charge density on that site.

FIGURE 13. The non-programmable AND gate. All four combinations of the inputs

are shown. The cells with heavy borders have fixed charge densities, while those with I
dotted borders are geometrcally biased toward zero as shov, n in the inset. The bias is 3
sufficient to decrease the on-site energy of the affected sites by 1%. Note that the output

only equals one if both of the inputs are also one. These are not schtimatic diagrams;

they are the actual ICHA results of the ground state charge densities in each system.

The diameter of each dot is proportional to the charge density on that site.

w
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FIGURE 1. Scbematic of the basic ive.site cell (a) The geometry of the cell The tunneling energy
between the middle site and an outer site is designated by t, while t' is the tunneling energy between
two outer sites. (b) Coulombic repulsion causes the electrons to occupy antipodal sites within the
cel. These two bistable states result in cell polarizations of P=•.1 and P=-1 (see Sq. (1)).
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FIGURE 2. Cell-cell response function for the basic five-site cells shown in the inseL This shows the
polarization P1 induced in cell 1 by the fixed polarization of Its neighbor, P2. The solid line
corresponds to antiparallel spins, and the dotted line to parallel spins. The two are nearly
degenerate, especially for significantly large values of P2.

I



I
I
I
I
I
I
IN

0) A . ,4 ............

"0.2 N N 7 "".
r7I ,- , " , "

I -0.2 L

I -0.4

I -1.0 -0.5 0.0 0.5 1.0
I 

2

FIGURE 3. The lowest four eigenstate energies of cell I induced by the polarization of cell 2. The
insets show that the lowest two energy states always correspond to the same polarization direction
as in the driver. Slight exchange splitting effects between spatially symmetric and spatially
antisymmetric states breaks the fourfold degeneracy for very small values of P 2.
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FIGURE 4. The cell-cell response function of the basic five-site cell for various vaulues of theparameter t in E.q. (2) (after reference (14). The induced polarization In ceil 1 Is plote as a functioni
of the polarization of its neighbor, cell 2. The curves correspond to t--0.2 meV (solid line), t-0.3 ,ueVI
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FIGURE S. The cell-cei response function for the standard cell with 11=0 at various temperatures
The response degrades as Cemperatre increases. Above 412K, the response would be unacceptable
for use in a QCA. This maximum operating temperature is highly dependent on the physical size of
the cell; molecule-sized cells would behave in a satisfactory manner up to room temperature.
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FIGURE 6. Four geometric variations on the simple model quantum celL (a) Schematic diagrams
of the four cells. Cells C and D occupy less area, but all four cells are drawn with the same
minimum spacing between neighbors. Cells B and D will require potential variation between the .
sites to selectively inhibit tunneling. (b) The ceil-cell response function for each of these cell designs.
Cell B has the best response, but the improvement over A is small.
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FIGURE 7. The cell-ceUl response function for the basic five-site cell occupied by a single electron.
The weak re"ponse indicates that such a cell is unsuitable as the basis of a QCA.
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FIGURE S. Cell-cell response function for the basic five-site ceil occupied by three electrons. Such a
cell is also unacceptable as the basis of a QCA. 3
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FIGURE 9. The "quantum dash" as a QCA cell. (a) A schematic diagram of the cellular
arrangement. The length and spacing is similar to that of the basc five-site cell in Fig. (Is). Each
cell is modelled as a one-dimensional infinite square well. The cell-cell response is shown in (b).Note that the vertical aids only shows P2 over the range [4).1,+.11. (c) The one-dimensional charge
density in cell 2 for a fully polarized neighbor (P,= 1). The nearly symmetric charge density yields a
very low pohirization.
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FIGURE 10. The double weUl as a QCA cell (a) A schematic diagram of the cellular arrangemenL
The total dimensions are identical to those of Fig. (8). The middle third of each cell contains 150I
rneV barrier to isolate the top and bottom of the celL (b) The cell-cell response functloa for such an
arrangement. Note that the vertical axis now shows P2 over the range [-1.0, +1.01. (c) The one-
dimensional charge density in cell 2 for a fully polarized neighbor (P1 =I). The highly asymmetric
charge density results in a cell that is almost completely polarized.
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FIGURE U. Majority voting logic. The states of the center and right cells are always the same as
_he majority of the three fixed neighbors. The cells with heavy borders have fixed charge densities.These are not schematic diagrams; they are the actual results of the ICHA solution of the groundstate charge densities in this system. The diameter of each dot is proportional to the charge density
on that site.
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FIGURE 12. The programmable AND/OR gate. The program line i set to one in each system, so
the gate is displaying OR logic. AD four combinations of the non-program line inputs are shown.
The celis with heavv borders have fixed charge densities. Any one of the three inputs could be the
program line; the left cell 6- not speciaL These are not schematic diagrams; they are the actual
results of the ICHA solution of the ground state charge densiti.s in each system. The diameter of
each dot is proportional to the charge density on that site.
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Transmission resonances and zeros in quantum waveguides
with resonantly coupled cavities

Wolfgang Porod, Zhi-an Shao, and Craig S. Lent
wepartment of Electrical Engineenng. Universty of N'otre Dame, Notre Dame. Indiana 46556

(Received 19 May 1992; accepted for publication 24 June 1992)

We report on the existence of transmission zeros in quantum waveguide structures with
resonantly coupled cavities. Such zeros do not occur in the usual double-barrer resonant
tunneling systems. For quantum waveguides. the transmission probability exhibits pairs of poles
and zeros in the complex-energy plane. The o•served sharp structure of the transmission
resonances and zeros can be understood in terms of these zero-pole pairs.

Electronic transport in ultrasmall semiconductor As an illustration of the above arguments, we show in
structures resembles wave propagation in waveguides,1.2 Fig. I the transmission amplitude in the complex-energy
and device applications based on this analogy to micro- plane for a double-barrier resonant-tunneling structure
wave devices have been proposed. The transmisson ampli- which is schematically depicted in the inset. This structure
tude in these systems exhibits a rich structure which is supports true bound states for E <0, double-barrier reso-
related to resonance phenomena. 3-5 In this letter, we dem- nances for 0 < E < Vo. and continuum resonances for E
onstrate how quasibound states in resonantly coupled cay- > V0 . Figure I(a) shows the transmission coefficient on
ities give rise to zero-pole pairs in the complex-energy the real-energy axis (E>0). while Fig. 1(b) depicts a con-
plane. Transmission zeros are unique to quantum wave- tour plot of the absolute value of the transmission ampli-
guide structures, and are absent for double-bamer reso- tude in the complex-energy plane. Note that transmission
nant tunneling. resonances and poles occur at essentially the same energies.

Resonances have long been studied in transmission We now proceed to the study of transmission in quan-
through double-barrer resonant-tunteling structures.6 '7 It tum waveguides in the presence of coupled resonators. The
is well known that these resonances are related to the ex- prototypical resonator structure we adopt is the resonantly
stence of quasibound states in the quantum-well region. coupled stub, as schematically shown in Fig. 2. The reso-
Within the Breit-Wigper formalism, a quasibound state at nant cavity is created by closing off the side arm in a

energy Eo and decay time r=ifl/F will give rise to a trans- three-way branch [Fig. 2(b)]. The new feature here, with
mis.sion resonance with a Lorentzian line shape. T(E) respect to quasi-one-dimensional double-barrier resonant-
=iF2/[(E-Eo)2 + 1r 2. . In the complex-energy plane, this tunneling is the existence of wire branches which inher-
corresponds tc a simple pole of the transmission amplitude ently makes this problem spatially two-dimensional.
at the complex energy z=Eo-iF/2., We start out by considering transmission through the

It is instructive to demonstrate why a quasibound state three-wri splitter [Fig. 2(a)]. This problem has been stud-
gives rise to a pole in the complex-energy plane. In analogy ied by several workers. i-12 and we follow them in choosing
io an optical Fabry-Perot resonator, the total transmission a scattering matrix approach which connects the out-going
amplitude across both bamers, 7,RL (from left to right), and in-coming waves in each wire branch.
nmay be related to partial transmission and reflection coef-
ficients at each barrier:9 /) OL rt LR IL It.).

ORe=etRL rR tRS IR). (3)
""-RL=tNW(eikL+e"'LrReL rLe"kL OL =tSL tSA rS IS

+eiUrtek• kZrRe rLeL --. )tWL (I) The elements of the scattering matrix are onstrained by
unitarity. The reflection and transmission amplitudes are

=tRW -ikL r tkL r t WL. (2) the elements of a Shapiro-Buttiker matmx,' 0 *13 and their
e r rL specific values depend upon the detailed geometry of the

Here, twf denotes the transmission amplitude from the left waveguide and junction. Typically, the elements of the

to the well regimn, and rR is the reflection coefficient at the scattering matrix are slowly varying functions of energy.

nght barrier. The phase accumulated by an electron with Making the sideurrn into a resonator forces a standing

energy E moving from one side of the ouantum-well reso- wave in the stub [Fig, 2(b)). This imposes an additional

nator of length L to the other is represented by the phase relationship between the out-going and in-coming ampli-
factor eip(ikL), where k (2mE)/f. Poles occur at tudes in the %ide branch, O- and I1, respectively,

those complex energies for which the denominator van- Os=A(E)is, (4)
ishes. For real-value reflection amplitudes, it is an easy
matter to see that this occurs for wave numbers k whose where A = e'V(E) and the phase angle '(PE) is a property of
rmal part is an integer multiple of 7r/L. i.e., for quasibound the resonator.;Itates. Note that this geometric series does not possess ze- The transmission and reflection amplitudes for the
ros. quanthim waveguide with a res.,nantly coupled stub. .1
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t.0 T\ .- nator, which is reminiscent of double-barrier resonances,
Eq. (2). An expansion of (5) yields

;I . + I

which allows the following interpretation of the transmis-
sion and reflection amplitudes for the resonantly coupled l
stub. Each multiple reflection in the stub contributes a

(a) 41.60 o factors rS for reflection back into the sidearm and a phase
*A M.1 ol & 4factor I/A for the roundtrip (up and down). The sum of U

all multiple reflections results in a geometric seres, veryi
iJ much like a Fabry-Perot resonator. Structure in the trans.

mission amptitude is due to two effects: (i) The resonance
denominator which gives rise to poles, and (ii) the possi-
bility of destructive interference between the first and the

C e~second terms which may result in transmission zeros. Note
"i44 that in contrast to Eq. (1). zeros are now possible.

i4• Ms Next, we examine in more detail conditions for the -
* A&0. _ existence of transmission zeros. As seen from Eq. (5), ze-

(b) C" 0.1 0.no o 0..2 C G se ros in the transmission amplitude, ' -RL=O, occur if
Ib) Real Pan of te Lairu WVP

,A=rs-L•S- (when J-LO 7
FIG. I Trauzcaon amplitude for a double-bar reonant-unnehing [R (
structu , which is scbemaixAl depicted in the rftI ( Vo=0.2 v. Y of the
=O. IeV, L=30 nm. and b=S nm); (a) shows the tnsmissm coeffi- The above cond relates a property resonator, ,
cent on the realezierw axia, and (b) shows a ontomur plot o( the absolute to the characteristics of the junction between the stub and
value of she tanfsmisini amplitude in the ,:omplZx<rgy plane. the channel, es and P's. In particular. Eq. (7) can only be

true if the right.hand side is a phase factor on the unit

and R. may now be determined by combining Eqs. (3) circle, i.e., Irs-ItR1staL/ = I. It is, perhaps, a surprising

and (4). For the case of transmission from !cft to right, consequence of nitarty, but easy to show, that always

they are given by tPS'SL (8)

t 1RS4SL 1LSl. s- -.
Y-RL=ItL+A-rs, an JL=rLA-_rs. ) Unitarnty, therefore, ensures that both the left.hand side 1

and the right-hind. side of Eq. (7) are constrained to the
Note that the second terms contain a resonance denomi- unit circil, which implies that a transmission zero occurs

when both phase angles are the same. This proves the ex-
istence of transmison zeros for transmission in

I1 Ois waveguidies.
Wire BM In the following, we elucidate the above general argu-

Wire 8n0C •__ments using specific model systems. We assume that the
transmission chatimek ame very thin wires, allowing us to

I onqrsider only the coordinate along the wire. Transmission
-2 I Oand reflection coefficients of such quasi-one-dimensional

,• OL"_ [ I,_ ý I It models have been studied in literature. °'"''. 4 We match theL. . - J values of the wave functions and the appropnate derivative

S(a) boundary conditions at each branch point in the network.I"

For the symnieuical open branch, this results in reflection I
and transimi ir1 amplitudes which are independent of en-

Reson 1 s/i-~e,•m ergy and orientatioa, rL =rt=r= -- 1/3 and tLA= LSI LI SR 1

= s/ = 2/3.
The sidearm can now be made into a resonator of

IL-f -0, length L by erecting an infinite potential barrier. This
I - t forces the wave function to be zero there, and implies A(E)
- - -- =-exp(-2ikL). Thus, A moves around the unit circle

Mb) with an angular frequency proportional to the wave num-
ber. Using Eq (5), the transmission amplitude for this case

FIG. 2. Sche(atac drawing of a woveugn wvte a t oul of a strongly coupled stub can be given analytically, .7
caIvity. (a) shows a wire banc~b with ,m~rngo ind outgeang waves olt-

udeel bihscuonre ni. whh is indicatedbythedasib bof;(b) shows =2/[2+icot(kL)J. Figure 3 shows.;-:) in thecomplex-
s reonani stub whbcin to obtamied by closing off the -%cawmn. energy platne: for a complex argument z. Note the appear.
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FIG 3 Tramniaaion amplitude for the strongly coupled stub. which is FIG. 4. Transmission amplitude for the weakly coupkld stub. which is
,chenmaticaily depiced in the inset; (a) shows the transmission coefficient ,chematically depicted in the inset; (a) shows the transmission coeflicient
•on the real-energy axis, and (b) shows a contour plot of the absolute on the real-nergy axis. and (b) shows a contour plot of the absolute

value of the r••nsmnsaion amplitude in the complex-energy plane. value of the transmission amplitude in the compiex-energy plane.

ance of transmission zeros on the real-energy axis, and the waveguides. lead to zero-pole pairs of the transmission am-

existence of poles in the fourth quadrant of the complex- plitude in the complex-energy plane. The proximity of

energy plane. The zeros occur at energies for which a these zeros and poles leads to sharp varations of the trans-

standing wave forms in the stub, i.e., when k = n- 'r/L with mission coefficient with energy. Zeros are a new "animal"

n= 1,.... Also note that the maxima of the transmission not observed in the usual one-dimensional transmission

coefficient do not occur at the location of the poles, as for resonances.

double-barrier resonant tunneling. This is a particularly We are grateful for stimulating discussions with Dr. S.

simple example since the elements of the scattering matrix Bandyopadhyay, Dr. M. Biuttiker, Dr. S. M. Goodnick,

are independent of energy. Dr. W. Potz, Dr. P. Price, and Dr. M. Sam. This work was

An energy dependence in the elements of the scattering supported. in part. by AFOSR and ONR.

matrix may be introduced by weakly connecting the stub to
the channel via a tunneling barrier, as schematically de- Kirk (Academic. Boston. 1989).

plctrd in the inset of Fig. 4. We present numerical results :4nalogues in Op;ics and Micro Elecironu. edited by W. Van Haenngen

for a tunneling barrier of 0.5-tV height and I-nm thick- and D. Lenstra (Kluwer Academic. Dordrecht, 1990).

ness. Figure 4 shows the transmission amplitude for this 'F Sols, M. Macucci. U. Ravaioli, and K. Hess J. Appl. Phys. 66, 3892

weakly coupled stub in the complex energy plane. Note (1989).
'C. S. Lent, in Cnmputational Electronict edited by K. Hess, J P. ILeb-

again the existence of transmission zeros as predicted by urton, and U Ravaioli (Kluwer. Boston, 1990), p. 259.

Eq. (8). The poles move closer to the real-energy axis P J. Price, IEEE Trans. Electron. Devices 39, 520 (1992).
which corresponds to the longer lifetime of the resonant vP J. Price, Phys. Rev. B 38. 1994 (1988).w M. Buttiker, IBM J. Res. Dev. 32. 63 (1988).
states due to the confining barrier. The most striking fea- 'T B Bahder. C. A. Momson. and J D. Bruno, Appl. Phys. Leit. 51.

ture is the occurrence of a zero-pole pair for each quasi- 1089 (1987).

bound state. With increasing barrier height, the pole ap- 'S. DIttia Quantum Phenomena (Addtson-Weafry, Reading, MA.
1999).

proaches the zero which leads to a sharper and sharper '"M. Buttiker, Y Imry, and M. Ya. Azbel. Phys. Rev. A 30, 1982 (1984)
transition between a transmission zero and one on the real- "M. Ca1hy, S. Bandyopadhyny. and H. L. Gruibs. Phys. Rev. B 39.

energy axis (compare Figs. 3 and 4). In the limit of art 12989 (1989)

infinitely high bamer, the poles and zeros merge which "D Kowal. U. Sivan, 0. Entin-Wohlman. and Y. Imry, Phys. Rev B 42.

Correqponds to ,/-= I for a completely decoupled stub. 9009 (1990).
"B. Shapiro, Phys. Rev. Leit. 50. 747 (1983)

In summary, we have demonstrated that quasibound "C H. Wu and G. Mahler. Phys. Rev, B 43, 5012 (1991).
states in cavities, which are resonantly coupled to quantum "I E. Avron. A. Raveh. and B. Zur. Rev Mod Phys. 60. 873 (1988)
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Transmission phenomena in quantum waveguide structures are studied by exam-

Hing the transmission ampfitude in the complex-energy plane. We find that, similar

to double-barrier resonant tunneling, there are transmission poles in the complex-

erergv plane for quantum waveguide structures which contain quasi-bound states in

attached resonators. such as t-stubs and loops. In contrast to double-barrier reso-

nant tunneling, however, we also find that the quantum wire networks also possess

transmission zeros (antiresonances). which always occur on the real-energy axis. The

,xistence of transmission zeros is a unique feature of quantum waveguide system

with attached resonators, but is absent for double-barrier resonant tunneling, which

contains the resonant cavity as part of the transmission channel. We demonstrate

that each quasi-bound state of the resonantly-coupled quantum waveguide system

leads to a zero-pole pair of the transmission amplitude in the complex-energy plane.

Ilie previously noted resonance/antiresonance behavior of the transmission coeffi-

cient which leads to its sharp variation as a function of energy, can be understood

i i terms of these zero-pole pairs. We discuss our findings in the context of Fano

resonances (U. Fano, Phys. Rev. 124. 1866 (1961)) which are known to occur when

I|
I



I _

two scattering channels are available. one correpsonding to a continuum ol states and

the other one to a discrete quasi-bound state.

I

PACS numbers: 72.10.Bg, 73.20.Dx. 73.40.Gk

I
i . INTRODUCTION

Electronic transport in ultra-small semiconductor structures reveals the quantum

tnechanicai wave nature of the charge carriers. As\ shown iMi pioneering papers by

Landauer and B3ittiker [1.2'. electronic conduction in this so-called mesoscopic regime

{:I] can he viewed as a transmission problem, and the conducti.nce is related to the I
transmission coefficient by the quantum unit of conduction e2/h. Much work has

ueen inspired by analogous wave phenomena in optics and the possibility of utilizing

resonant transmission behavior for electronic device applications [4]. Fabry-Perot-like

transmission resonances in semiconductor superlattice structures have been studied

since the seminal work of Esaki and Tsu [5]. The phenomenon of double-barrier I
resonant tunneling (DBRT) is well understood and practical devices based on this

concept. even operating at room temperature. have been developed [6]. Recent work

has focused on transmission in electronic waveguides and related quantum interference

devices. and iL has been noted that resonance phenomena in these structures give rise

to rich features in the transmission coefficients [7]. I
In this paper we investigate resonance phenomena for transmission in quantum

waveguide structures by studying the transmission amplitude in the complex-energy

plane. In analogy to double-barrier resonant tunneling, we find that transmission

resonances are related to the existence of quasi-bound states. There is one major

I
I
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I ,ofierence. nowever, as pointed out mw us iii , recent letter ',j. DBRT gives rise

io the well-known Lorentzian-shaped Breit-Wianer transmission resonances, which

,orrespondi to poles in the complex-eneray plane. Ihe tranmission coefficient for

resonantly coupled waveguides. on the other nand. exhibits resonance/antiresonace

1 iteatures. which correspond to zero-pole pairs in the complex transmission amplitude.

We will demonstrate that these antiresonances. in fact, are zeros and that their exis-

tence is a consequence of unitarity for transmission in quantum waveguide structures.

Resonance-anti resonance features including sharp transmission minima have been

seen in recent numerical work on conduction in quantum waveguide structures and

I Ior transmission through an oscillating barrier !9]. A much-studied system consists

I d� a mnain transmission channei with an attached t-stub resonator [10-16). Sharp

,irop, to a minimum ,rc obsei ,ed it Lile transmission coefficient kwe will show that

ithose, in fact. are zeros), and forbidden bands are formed for multiple stub systems

1i7-201. Using a scattering matrix approach. Price [22] shed light on the relationship

I between the transmission coefficient and the quasi-bound states in the resonant t-

stubs. Another example of a resonantly-coupled waveguide consists of a channel

which is connected to a circular cavity [211. In this so-called "quantum whistle" the

I ,tuasi-bound states in the cavity are excited at resonant energies by the "electron

wind" in the channel. giving rise to sharp structure in the transmission coefficient.

I Impurities in a transmission waveguide also give rise to conduction in the presence

" ,f quasi-bound states, and resonance effects have been observed in several studies

[23-28S. Geometric effects in conduction channels may also result in bound states

."291, and the transmission coefficient has been studied for bends [30. 31], corners

'32. 33], crosses [34-371, etc. The sharp drops of the transmission coefficient are also

'found in the loop structures [38-4 1I. Similar resonant behavior has also been reported

for transmission in systems where several electronic subbands are available. Such

!:
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I
-ýtudies include electronic F - .V conduction band minima 142-441 and heavy-hole -

"i.aht-hole (45] interference effects for resonant tunneling in GaAs/AlAs double-barrier

Aeterostructures. Common to all of the above examples is that resonance features are

Observed when more than one scattering channel is available [46]. \rhea continuum

states interact with localized states, two scattering channels are available, one belongs I
to a continuum and the other to a bound state. These so-called Fano resonances (47] I
have first been studied for the interaction between light and electrons from atoms and

molecules. The two scattering channels may also belong to the two arms of a loop,

or to two different electronic conduction band minima (for example. F and X).

The prototypical system studied in this paper is shown in Fig. 1(a). An incident I
wave impinges upon the resonator structure under study. as schematically represented I
iAy the dashed box, and transmitted and reflected waves emerge. Tl.! classes of sys-

tems investigated here comprise double-barrier resonant tunneling and quantum wire

netw.Žrks, including t-stubs and loops. The quasi-one-dimensional problem of DBRT

can be thought of as transmission in a quantum wire which contains two barriers, as

shown in Fig. 1(b) where the potential barriers on the channel are represented by

the shaded boxes. Also shown is a -zoo- of so-called strongly- and weakly-coupled

:-stubs and loops which will be investigated. As described in more detail in the

appendix. we utilize several different numerical as well as analytical schemes to ob-

tain the transmission and reflection amplitudes in the complex-energy plane. Our I
analysis concentrates on the analytical behavior of these functions, in particular on

the zeros and/or poles which represent the quasi-bound states in the resonators. We

assume perfectly ballistic transport and quasi-one-dimensional dynamics, which may

be realized in the lowest subband of a very narrow quantum wire.

Thl-e body of this paper is organized as follows: Double-barrier resonant tunneling I
is reviewed and discussed in section 1I. A general treatment of quantum waveguides

4 I



- vitti attached resonators is presented in section lII. which includes the proof for the

'xistertce of transmission zeros as a consequence ot unitarity. We study thin-wire

L::etworks in section IV and show results for t-stub and loop structures. Section V

contains concluding remarks. Details of the mathematical formalism are given in the

I appendix.

I lI. DOUBLE-BARRIER RESONANT TUNNELING

It is well known that transmission resonances occur in double-barrier resonant-

tunneling structures 148. 49]. and that these resonances are related to the existence

"Of quasi-hound states in the quantum well region. This relationship can be made

,.xpiicit when viewing the transmission amplitude in the complex-energy plane 50.

-51). It has been shown that the poles of the propagator are the same as the poles

i ,,f the transmission amplitude [511. Consequently, a quasi-bound state at energy E 0

and decay time r = h/F gives rise to a simple pole in the transmission amplitude.

t(z). at the complex energy, z = Eo - 11/2. If this pole is sufficiently close to the

real-energy axis, the transmission probability' T(E) = it(E)12 . for a physical energy

I on the real-energy axis, E, is given by,

1r2

T(E) - EF 2  .4

which is a Lorentzian line centered at energy E0 with a full width at half maximum

S of F. This Breit Wigner formula [52, .531 describes the transmission resonance which

is caused by the quasi-bound state at energy E0 and decay time 7 = h/F.

It is instructive to demonstrate how a quasi-bound state, which is the constructive

I superposition of multiply reflected waves, gives rise to a pole in the complex-energy

plane. In analogy to an optical Fabry-Perot resonator [541, the total transmission

I 'rmplitude. 7.( can be expressed in terms of the partial transmission and reflection

ampiitudes. I's and r's. at each barrier. For transmission from left to right.

5



",- .L _ C:L RC L t:kL _- CCL -c ..;Lk: L .)
'TRL = tRW,(e' - " r L r t r r ,e r •' :trL - • L t2)

ttRW I kL . tWL. 3

Here. t WL and twni denote the transmission amplitudes from the left to the well

region and from the well region to the right. respectively. The reflection amplitudes

at the right and the left barriers are denoted by rn and rL, respectively. An electron

with energy E and wavenumber k = 0(2m*E)/h' accumulates a phase factor of I
exp(IkL) in traversing the width of the well. which is denoted by L. Poles in the 3
transmission amplitude are thus possible at those energies and wavenumbers for which

the resonance denominator in (3) vanishes. It is an easy matter to see that, for

real-valued reflection amplitudes, this occurs for wavenumbers k with a real part

which is an integer multiple of 7 1 L. But this also is precisely the condition which

(letermines the energies of the quasi-bo,,nd statec. Therefore, transmission iesonances

and resonant states coincide in energy. We also emphasize that the geometric series in

(2) does not posses zeros (except for the trivial case of zero transmission, i.e. tLw = 0

or twR = 0.)

We illustrate the above arguments with a numerical example. Figure 2 shows I
the transmission coefficient in the complex-energy plane for a double-barrier resonant

tunneling system which is schrematicaily depicted in the inset ibarrier height V' = 0.2

eV. barrier depth Vw = -0.1 eV. well width L = 30 nm, and barrier thickness b = .5

nmi. This structure supports true bound states for VW < E < 0. quasi-bound states

for 0 < E < t0, and continuum resonances for E > 1'0. Part (a) of Fig. 2 shows I
the transmission coefficient on the real-energy axis (E > 0), while part (b) depicts

a contour plot of the absolute value of the transmission amplitude in the complex-

energy plane. Note that transmission resonances and poles occur at essentially the

same real energies and that no transmission zeros exist. The lowest three resonances

6 I



I
possess energies below he barrier height: tnev correspond to long-lived states with

poles close to the real-energy axis. The continuum resonances at high.r energies have

-ilorter lifeumres and the corresponding poles move farther into the complex-energy

plane. Alternately, increasing the strength of the barrier (height or thickness) moves

I -he poies cioser up to the real-energy axis, which implies a ionger lifetime of the

I resonant state. In the limit of an infinite barrier. only bound states exist and the

poles move onto the real axis at these bound-state energies.

It is well known that quasi-bound states lead to rapid variations in the phase

of the transmission amplitude. Figure 3 represents the phase, modulo 2Tr, of TRL in

I rtie complex-energy plane: in part (a) on the real-energy axis, and in part (b) as a

Contour piot in the plane. Going full circle around each pole. there is a phase change

,,t 2,- indicative of a simple pole of the form 1i(E - ýEo - iF/2)). Note that lines of

,onstant phiase "stream downward" toward more negative imaginary parts.

Figure 4 shows the charge accumulated in the quantum well, which is obtained

I as the integral of the charge density between the barriers. Consistent with our in-

terpretation, maximum accumulation is found at those energies which correspond

to the quasi-bound states. The resonant charge buildup is due to the constructive

I -uperDosition of retlected and transmitted waves.

III. QUANTUM WAVEGUIDES WITH ATTACHED RESONATORS

It is well known that the transmission coefficient in a quantum waveguide pos-

I sesses structure due to changes in the waveguide geometry, such as bends. constric-

m tions. crosses, etc. The related problem of conduction in waveguides in the presence

of quasi-bound states has received less attention, although a few studi, s have been

I ieported [21. 221. Here, we specifically focus on transmission in quantum waveguide

structures which are connected to resonant cavities. The isolated resonator possesses

I
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I
;)ounoa states: attaching it to the conduction channel allows the wavefunction to leak

out. We will show that this coupling introduces both finite lifetimes of the quasi-

)ouiid states and resonance ,'tfects in the transmission coefficient. I'liese features are

similar to the double barrier resonant tunneling problem considered in the previous

section. however, the structure of the transmission amplitude in the complex-energy I
plane is different in each case. In particular, we will demonstrate that transmission

zeros exist for the resonant waveguides. and that the complex transmission amplitude

possesses zero-pole pairs which are related to the quasi-bound states.

Coupling between the quantum waveguide and the resonator is accomplished in

two steps, as schematically shown in Fig. 5. First, the junction region is viewed

as the branch point in a three-way splitter, as indicated biv the dashed line in Fig.

)(a). The properties of this wire branch are described by a scattering matrix, which

is further explained in section III.A. Second. the resonator is obtained by closing off

the side arm. as schematically shown in Fig. 5(b). The staiing wave in the resonant

cavity is characterized by a phase factor, which is detailed in section III.B. Based 1
on the unitaritv of the scattering matrix, we are able to prove that t.,e transmission 3
coefficient for these structures exhibits zeros. I

.\. Wire Branch

For the three-way splitter, as shown in Fig. 5(a), the amplitudes of out-going and 3
in-coming waves are related by the 3x3 scattering matrix:

OR = tRL rR IRS IR t 4)t 0) 1L tsR rs Is

The etements of the scatt -ing matrix represent the reflection amplitudes in each

branch. the r's, and the transmission amplitudes between the various arms, the t's;

I2-



I
ae branches are denotedO iL /. . an. ;td S, for l,,it. right. ina side (or stub), re-

ipectiveiy. WVe have Impincity assumed single-moded behavior. i.e. there is only one

I:ievant transverse moace M each branch to scatter to. lime reversai invariance, which

applies here in the absence of magnetic fields. constrains the scattering matrix to be

I •vmmetric [55. 56]. Current conservation requires this scattering matrix also to be

unitary, which implies the following relationships:

"rLr" + tLRtLR + tts' = 1 (5)

+,lL1 FRL ± rfr" + ts 1 (6)

. SL t SL -SR(.R + rr . (7)

I .\nd:

I r"tRL + tLR"R + !LS'RS = 0 (8)

rLtSL • t- t Q ".R + t.,sr_ = 0 (9)

I tRLtSL ± rRti.R -r tRSr"s = 0 (10)

I The values of the elements in the scattering matrix depend upon both the carrier

energy and the junction geometrv. This, of course. offers us the possibility of control-

lable device operation. For The special case of a completely symmetrical three-way

I splitter with three identicai arms. the scattering matrix iý constant, which will be

shown below. Generailv. the transmission and reflection amplitudes for a branch are

slowly varying functions of energy.

I B. Resonator

Terminating the side arm completely, results in the formation of a standing wave

in the stub. The amplitudes of the out-going and in-coming waves then no longer are

I lineariy independent, but are constrained by an additional relationship.

9
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I
0 = =A(E) Is. (11)

Hlere. A = rxpg i(NE) is a phase factor which describes the standing wave. Tile

energy-dependent phase ,(E) depends upon the details of thie resonator geometry.

Transmission in the presence of the resonator is described by a 2x2 scattering

matrix. Ehe condition ill) reduces the dimensionality of the original S-matrix by I.

Combining (4) and (11). it is an easv matter to show that,

OL _ PI-L TL R ILCOR) \ TRL 'IRR/ IR)

where TRL denotes the transmission amplitude from left to right, and lZrL the reflection I
amplitude for the left-hand side. which are given by. 3

"TRL =RL + ,_ tRS.SL

'TRL=IR A - FS,43

lZ L L + ." L -14)"A -- rsI

Note that the total amplitudes depend upon the characteristics of the t-stub resonator,

i.e. A\(E), and the details of the three-way splitter, i.e. the partial amplitudes t(E)

and r( E). In a fashion similar to double-barrier resonant tunneling, the sccond term

Of eqn. (13) can be expanded as. I

TRL z.= tRL _- tRs( + Is- \s I r + (15)
A A A A A± ",SL (-5)

The resulting geometric series, contained in the brackets, describes multiple reflections -

in the side arm. Fach roundtrip in the stub (up and down) contributes a phase fdctor

1/A, and each reflection back into the stub a factor rs. The amplitudes for being I
scattered into (from the left) and out (to the right) of the resonator are denoted by

tSL and tRs, respectively, and tRL denotes the straight-through transmission path

without a detour into the resonant stub.

10



I
Flie genera; form of TRL is tnat it Conisists of two independent terms, as seen

.n (,(ins. !13) - 15). One term (describes the straight-through transmission in the

i,:sence of the stub. and the second torm is a geometric series which is due i, multiple

reflections in the resonator. This has as a consequence the following structure of the

-- I "ransmission amplitude in the complex-energy plane: i) poles are possible because

oi the resonance denominator, in analogy to double-barrier resonant tunneling; and

,ii) zeros are possible because the two terms may cancel (ach other. Tie existence of

3 !,oth terms is the major difference with respect to double-barrier resonant tunneling.
in the latter case, as derived in the previous section. the transmsission amplitude is

I .]iven by just the geometric series.

i The form A - r.s for the denominator of T RL also predicts that the sharpness of

"tie resonance features will depend upon the strength of the coupling be.'v.'een the side

- I .rm and the ,hannel. For a weakly coupled t-stub. there iL a ldrj .,bability for

reflection back into the side arm, i.e. irsi --• 1. This imphies that in this case rs may

I appro:., , A on the unit circle (compare Fig. 6), thus giving rise to sharp resonance

features. On the other hand, a strongly-coupled t-stub has Irsi -- 1/3 and therefore

the amplitude rs never gets close t.o A on the unit circle, resulting in weak features

in the transmissioit coefficient.

C. Proof of the Existence of Transmission Zeros

In thc. previous section we demonstrated that transmission zeros are possible. in

I principle. In this section we prove that. in fact, transmission zeros must occur and

iihat their existence is a consequence ot iinitarity.

A zero of the transn-ission amplitude at a certain energy means that 'TPL=O for

hat energv..\s can be seen from vqn. (131. t his implies that

A = rs -- f IL when TRL = 0).

ZiL

I
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I
[be above condition relates a property of the resonator. the phase factor A. to a

',ropertl. of the junction bewteen the waveguide and the resonant cavity, the ts and

!"S which are the elements of the scritering matrix for the three-way splitter. Because

is a phasor on the unit circle. 16) can only be true if the r.h.s. also lies on the unit

,rcle for those energies at which transmission. zeros occur. It is a perhaps surprising I
consequence of unitaritv that for all energies the r.h.s. of (161 is constrained to be i
on the unit circle, i.e. alwayjs

s- tRStSL= 1. (17) 1
t RL

The detailed proof of the above equation is given in Appendix Bi. Unitarity. therefore. 5
,nsures that both the l.h.s. 1,nd the r.h.s. of (16) are constrained to the unit circle.

a.s schematically shown in Fig. 6. which implies that a transmission zero occurs when 3
uoth phase angles are the same. lsually, the r.h.s. is a slowly varying function of

,-heryV. ,;ld the Lh.s, is a phasor which moves around the unit circle with an angular

dependence proportional to the wavenumber, as shown in the examples below 157].

Using similar arguments, one may also investigate the conditions for unity trans-

mission, TRL=I. The unitaritv of the scattering matrix by itself is not sufficent to 3
nsure the existence of ones in the transmission amplitude. .s shown in Appendix

i32. T/?L=l holds true for certain energies if the structure is symmetric with respect

•o "left' and -right.' i.e. if the scattering matrix possesses the symmetry property that 3
,s = tLS, etc. This behavior is similar to double barrier resonant tunneling where it

is Known that perfect transmission only occurs for symmetric barrier structures [18. i
I.I

IV. THIN-WIRE NETWORKS

We illustrate the above general argumei.'s by demonstrating several specific ex-

stMples. As a model system, we choose networks of thin wires which are sufficiently 3
12
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::arrow mhat onix' motion in the (iIrection of tile wires is of interest. h'lie motion per-

_9en(ilcuiar to the wire is frozen in the iowest transverse subband resuiting in quasi

3 ,ne-(limensional dynamics. These thin-wire networks exhibit tile essential behavior

1A the transmission amplitude in the complex-energy plane under study here, without

U additional geometric complications inherent in a true two-dimensional system. For

certain structures our model is sufficiently simpie to yield analytical answers. Other

cases require numerical investigation.I We show results for stronlgy- and weakly-

3 ,coupled stubs and symmetric and asymmetric loops.

-I .A. fhree-way Splitter

_}e basic buiiding block of the stub and loop structures is the simple wire branch.

3 :,r three-way splitter. The wavefunction in the left, right, and stub branches are

I ,enoted y)v '1 L, TR, and 'Ps, respectively. For a perfect wire, they are superpositons

4, in-coming and out-going plane waves.

kPg = h£e;•¢ 4 OLe- ikTL

-- = ORCI'; -i - IRe-'" (18)

TS= 0,(X z + 1s'z.5

I iere. xr,, xR and xs denote the spatial coordinates in each branch. i.e.. left, right, and

s'tub. respectiveiy. The matching conditions at the branch point. = xR = xq = 0.

I for the wavefunctions and the derivative are:

I IT. + Or, = OR -± If

IL + OL = 05 + IS (19)

I -. Or= OR-ln- 09- Is

The l:st of these relations is the matching condition for the derivatives. WVe require

I_ the mimn of the derivatives in all directions at a branch point to be equal to zero.

3 which is a generalization of the current conservation condition. However, :he above

13



I
,ierivative condition is stronger than current conservation: it impiies the conservation

Of current, but not vice versa. Similar conditions have been used in the literature

of quantum networks ,58], where the sum ot the derivatives is related to a so-called

vertex potential which is a delta-function potential at a given branch point. In our

case, the vertex potential is assumed to be zero and the general Sturm-Liouville I
boundary condition reduces to the above requirement of the derivatives adding to

zero.

The above system of equations represents 3 conditions which constrain the 6 am-

plitudes for the incoming and outgoing waves in each of the three branches. These

6 amplitudes are also related by a scattering matrix when viewing the 3 amplitudes I
of the incoming waves as independent parameters. and the 3. ampiitudes of the out-

going waves as the dependent variables. The 3 equations 19) thus are sufficient to

completely specify the scattering matrix. It is an easv matter to show that.

OL - 1/3 21/3 2/3 IL

OR 2/3 -1/3 ,2/3 j Ii 20)

Os. 2/3 2/3 -1/3) i s

Comparing with (4-), we see that I'L = rR = r,3 == -1/3 and tRL = t RS = t¢L = 2/3

for this simpie three-way splitter. I
In Appendix C( we show that the above result for the scattering matrix is a special 3

case of previous work [.38.41. 121 in which the coupling of a ring to a lead was studied. I
B. T-Stubs

WVe now create a t-stub resonator in the form of a dangling-wire of length L by I
truncating the side arm of the three-way splitter with an infinite potential barrier at

xs = L. The wavefunction has to be zero at the end of the side arm. 0.e'kL+4 Ise-lL =

0, which implies that the amplitudes of the in-coming and out-going waves are related 3
11 I
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I
aiv phase ,actor. A = ,;Is, as previously (tiSC. geometry, the stanaing

waves in the resonator are characterized by the phasor, M( E) = -exp( -2UkL). with

Iphase that changes inearly with wavenumDer k.

The transmission amplitude for this so-called strongly-coupled stub. which is

I cchematicaliv shown in the inset of Fig. 7. can now be found by using in eqn. ,13)

I the above form for A and the elements of the scattering matrix for the wire branch

120). It is an easv matter to show that the transmission amplitude is given analytically

I T = .1cot21 )

I l~igure 7 noows the transmission ampiitude in the complex-energy plane for a strongly-

Coupied t-stub with stub length L = 10 nm: part (a) shows the transmission coefficient

on the reai-energy axis. and part (b) shows a contour plot of the absolute value of the

transmission amplitude in the complex-energy plane. Note the appearance of trans-

I mission zeros on the real-energy axis. and the existence of transmission poles in the

complex-energy plane. Figure 8 represents the phase of the transmission amplitude

in the complex-energy plane for the strongly-coupled stub. The phase. modulo 27r,

Is shown in part (a) on the real-energy axis. and in part (b) as a contour plot in

'he piane. Note that at each quasi-bound state, which coincides with the transmis-

I-sion zeros. the phase rapidly changes by -. The most striking feature of Fig. S is

the demonstration of zero-pole pairs in the complex-energy plane. The zeros occur

lt energies for which standing waves form in the stub. i.e. when k = nsdg/L with

1 The wavefunctio= . at i transmission zero has to be zero at the branch

point which forces the wavefunction in the resonantor to be zero at both ends of the

I stub..Vote also that the maxima of the transmission coefficient do not align with the

I ,ocatzon of the poles, as in the case of double-barrier resonant tunneling.

I



I
Because of the symmetry of the structure. transmission maxima in this case are

*ransmission ones. ForT = 1. the wavefunction at the branch point must be 1. which

implies a standing wave in the stub with a maximum at the branch point and a zero at 3
the end point: i.e. when k = (2n + 1),r.'2L) with n = 0. 1.2..-.. In general. maxima

for waveguide structures occur between two zeros at some intermediate energy which I
is determined by the proximity to the real-energy axis of neighboring poles. For this I
simple case, the elements of the s, ering matrix are constants, i.e. independent

of energy. The energy dependence ot the transmission amplitude is provided by the -

resonance phasor A(E).

An energy dependence in the elements of the scattering matrix may be introduced I
i)v weakKlt coupling the stub to the channei via a tunneling barrier of length i and 3
height to. as schematically depicted in the inset of Fig. 9. The transmission amplitude

may be given in closed form,

T [ i K[kcos(kA)cos1 10) - Klsin(kA)sin(Ki),] 1 22)

7 =[kcos(kA)3sZnIK1) + Ksin(kA_)cos(K1)12

where k = ,/2m-E/h, K = /2r(E-Y o)/h. and , = L - 1. For the numerical

example shown in Fig. 9, we choose a tunneling barrier at the branch point with a

height of 0.5 eV and a thickness of 1 im (The same dimensions will also be used for the I
barriers in subsequent examples). Figure 9) depicts the transmission amplitude in the

complex-energy plane for this so-called weakly-coupled stub. Note again the existence

of transmission zeros on the real-energy axis. as predicted by our general arguments 3
in section III. Note also that, with respect to the previous example of a strongly-

coupled stub, the poles in the complex plane now are closer to the real axis, which I
corresponds to the longer lifetime of the resonant states due to the confining barrier.

As a consequence of the zeros and poles approaching each other in the complex piane,

the may:ma on the real axis move closer to the zeros, which results in the stronger 5
16

I



I onergy dependence observed in Fig. )(aj when compared to Fig. 7(a). Each resonant

state produces a zero-pole pair in the complex energy piane which gives rise to the

I observed energy dependence of the transmission coerficient on the real-energy axis.

With increasing barrier height. the pole approaches the zero which leads to a sharper

I and sharper transition between a transmission zero and one on the real-energy axis.

I In the limit of an infinitely high barrier, the poles and zeros merge which corresponds

to T = 1, and independent of energy, for a channel with a completely decoupled stub.

I The proximity of transmission zeros and ones on the real-energy axis, which results

in the more or less sharp variations of the transmission coefficient with energy, can

I eI) understood from a wavefunction argument. The electronic states in the resonator

n are standing waves. which have to match to the wavefunctions in the channel at the

branch point. This impiles that for a transmission zero or one. the wavefunction at

the branch point has to be zero or one, respectively. This circumstance is illustrated

in Figures 10 and 11. where the branch point is labeled by 0 on the spatial coordinate.

I Shown are the absolute values of the wavefunctions in the stub at both transmission

zeros and ones for the cases of strongly- and weakly-coupled t-stubs. respectively. As

discussed above, and illustrated in Figs. 10(a) and 11(a). for the strongly-coupled

stub the standing waves in the resonator differ by a quarter wavelength for T = 0 and

T = 1. This implies that in this case the zeros and ones are well separated in energy,

as seen in Fig. 7(a). For the weakly-coupled stub. the standing wave is connected

I to the wire branch via a tunneling barrier, as illustrated in Figs. 10(b) and 11(b).

Now only a smaAl change in the wavelength of the standing wave is needed as the

transmission coefficient varies from a maximum to a minimum. Also note that the

amplitudes of the standing waves at a zero are larger than those at a one. Figure

12 illustrates, as a function of energy. the charge build-up in the t-stub. which is

I measured by the integral of 14112 over the length of the stub. The arrows at the top
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axis denote the locations of the poles ot tile transmission ampiitude in the compiex-

1,nergy plane for the cases of strongly- and weakly-coupled stubs, which are identified

in the insets: compare also Figs 7(b) and 9(b). The resonant states for the weaklv-

,Coupled stub are sharper in energy and they contain more charge than those of the

strongly-coupled stub. which is due to the confinement provided by the tunneling

barrier.

It is interesting to study double-barrier resonant tunneling in addition to t-stub

resonances. The results of adding two tunneling barriers on the transmission channel

for strongly- and weakly-coupled stubs are shown in Figs. 13 - 14, respectively.

The separation between these two barriers with height •0 = 0.5 eV is assumed to

:)e (i = 4 nm. and the iength of the stub is again L = 10 nm. We notice in both

cases that there is. in addition to the now familiar zero-pole irs. another set of

poles in tile complex-energy plane, and a corresponding set ot transmission ones on

the real-energy axis. The additional ones are caused by resonant tunneling through

the two tunneling barriers on the transmission channel. in complete analogy to the

previously discussed case of double-barrier resonant tunneling. Comparing Figs. 7 3
and 13 for the strongly-coupled stub. we note that the transmission zeros occur at

exactly the same energies. Because of the confinement provided by the barriers, the

zero-pole pairs are closer together in Fig. 13 than in Fig. 7, which is also reflected

in the sharper energy dependence on the real-energy axis. The additional pole at

E = 0.14 eV. which is associated with the transmission one, is due to the first

resonant state eiergy of two tunneling barriers on the transmission channel. Because

of our choice for the separation between the barriers and the length of the stub, this

energy is close to the energy of the second lowest t-sub resonant state. This leadb to

the apparent coupling of the two poies. and the resulting "stretching" of the second I
lowest zero-pole pair. The case of the weakly-coupled stub with the double barriers

18 I i
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•m the transmission ciaannei is iilustratea in Fig. 14: compare to Fig. 9 without tile

barner• in the channel. Again, the additional double barrier resonant tunneling does

not niter the location of the zeros which are a property of the quasi-bound states in the

•tub. of. Figs. 14 and 9..-\lso. t.he additional barriers lead to the very close zero-pole

pairs and sharp transmission peaks shown in Fig. !4. Because of the relative lengths

chosen, the lowest double-barrier resonant state is close in energy to the second lowest

- quasi-bound state in tile t-stub. As also explained above, this leads to an interaction

between the pole which is due to double barrier resonant tunneling, and the pole

which belongs to the t-stub's zero-pole pair.
i ['he interaction of the poles due to the double-bamer resonances and a weakly-

I coupled t-stub is illustrated in Fig. 1.5. I'heseparation between the double barriers.

which are placed in the channei svmmetricailv around the stub. is d = 4 nm, d = 6
I lml. and d = S nm for parts [a). ,.bl. and (c), respectively. In all cases, the total [

I
I .I,eng,, ut the t-•tub is L = i0 nm. For Fig. 15(a), lowest doubie-barner resonant

I state is close in energy to the second quasi-bound state in the stub. which leads to

i the observed interference between the lowest isolated pole and the second zero-pole

pair..No strong interaction is observed in Fig. 15(b), which shows sharp zero-pole

.i pairs and isolated !•oles at intermediate energies. In Fig. 15(c), every double barrier

resonance is close in energy to a t-stub state, and there is again strong interaction

E between the p, .es in the complex-energy plane. Figure 16 shows the phase in the

_• complex-energy plane for the same structure as in Fig. lS(b). Note the rapid phase

- chan: e for each zero-pole pair, compare Fig. 8. and the behavior of the isolated poles

I which is similar to that in Fig. 3.

.\11 wire structures discussed so far are symmetrical about the t-stub, which im-
I plies that the scatterin• matri:, possesse,,: a left-right invariance. ,-ks shown in the

i previous figures and proven in the appendix, this symmetry property ensures that

! 19
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I
'ransmission maxima are t ransmission ones. Non-svmmetrical wire structures are

-hown in the insets of Figs. 17 and IS for strongly- and weakly-coupied t-stubs. re-

-Dectiveiv. The left-right symmetry is broken by placing a single tunneling barrier on 3
,,Ie side of the transmission channel at a distance of d = 2 nm from the branch point.

While transmission maxima no longer correspond to perfect transmission, T < 1.

transmission zeros still persist in accordance with our theory. Note turthermore, that I
the asymmetrical barrier in the channel does not alter the location of the zeros, which

Is a property of the t-stub: compare Fig. 17 to Fig. 7 (strong coupling), and Fig.

iS to Fig. 9 (weak coupling). For the strongly-coupled t-stub. there are poles in

"ne complex-energy plane which correspond to standing waves between the tunneling

)arrier and the end of the stub. .\n example is the additional pole between the lowest

,dna second lowest zero-pole pair shown in Fig. 17. For the weakly coupled t-stub,

these additional criasi-bound states are not possible because of the barrier at the

:ýranch point. Consequently. Fig. 18 does not show bouble barrier resonant tunneling

Poies in addition to the familiar zero-pole pairs.

C. Loops U
We also investigated transmission in loop structures which has been the topic

,,t numerous previous studies reported in the literature. Our key finding reported

here is that loops also exhibit zero-pole pairs of the transmission amplitude in the

,omplex-energy plane. Loops. in analogy to t-stubs. may be viewed as resonators

'.vith associatcd quasi-bound states, which give rise to transmission resonances and

zeros.

Figures 19 and 20 show Lhe transmission amplitude in the complex-energy plane

For symmetrical and asvmmetrical loops. respectively, as sketched in the insets. The 3
lengths of the lower and upper arms are denoted by L1 and L2 , respectively. For these

20
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I
0o-cailed stronglv-coupied loops, the transmission ampiitude may be found anaiyt-

,ally by cascading the scattering matrices of the two branch points, which represent

Fle couipling to the leads, and xith values given by eqn. t2 0)..\ phase factor t:kLI

represents the phase change in traversing the arm with length Li, with a similar term

for the other arm.

4eIcL, (1 - e2'kL-) + 4etkLg(1 -e2ikL2

(3 + kL "L 2 - (e ' k" , )2

I From the above analytical expression for T, we see that transmission zeros occur

wxhen the numerator in eqn. t23) vanishes, i.e.

I .,n(kL 1 -r -Irn(kL 2) = 0. 24)

I -his requires the arguments of both sine-functions to satisfy.

I k(LI -r L2) = 2nir, 125)

or

I k(LI - L,)= (2n + 1)r. 126)

lhe tirst reiation. eqn. (25). is the condition for the formation of a standing wave

around the loop. The second relation. eqn. ý26), is the condition for destructive

I interference due to the Aharonov - Bohm effect. Note that for the symmetrical loop,

a zero in the numerator is accompanied by a zero in the denominator of (23).

The strongly-coupled symmetric loop, as shown in Fig. 19 for L1  = L2 = 10.5

i,,m. exhibits transmission resonances with T = 1, but no zeros are visible. Note

the existence of poles in the plane which are due to multiple reflections between the

two branch points, in a fashion analogous to double barrier resonant tunneling. The

:vmrnetric loop is special since it possesses true bound states which produce poles on

21I
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I
the real-energy axis. These poles exactly cancel the zeros of T. compare Fig. 19(aj, p
which would otherwise be present. Transmission zeros appear for the strongly coupled

asymmetric loop. as shown in Fig. 20 for L, = 12 nm and L2 = 10.5 nm. .- nv siight

.Lsvinnietry leads to decaying quasi-bound states with their poles removed from the

real-energy axis. This produces the zero-poie pairs visible in Fig. 20. I
The difference between symmetrical and asymmetrical loops can also be under-

stood using wave functions arguments, schematically shown in Fig. 21. In general.

the wavefunction in the loop is given by,

kri -,)le27)

*-.t = ~:• - B.2e-'•' -2S)

,nere ?', and - 2 are the wave functions and x, and X2 are the coordinates along the I
respective arm of the loop; the origin is .liosen to be at the left branch point BL. tsee I
inset of Fiz. 21). The A's and the B's are the coefficients which will be determined

by the particuiar boundary conditions. Utilizing the same matching conditions as in

section IVA..- at the branch points BL and BR, we obtain.

1 ± r = A I + B1  i29)

1 -4-r = A-,- B2  (30)l

1 - r =,..t - t 1 + 1.42-- /B2 ) 31)

a rio

t = A Ie, t' 4- B e-' L' t32) 3
t = i2e'kL2 + B2&-'kLi (33)

t = (Aie'IL1 - Bie-kLe ) . (A 2e'z" - B 2 e-kL2) (34)

A standing waveis formed around the loop when k(L 1 +L 2) := 2-. For thesymmetrical 1
loop, we find from (23) that the transmission amplitude t = -1 and hence r = 0.

I



I
'I tbstituting these values in (299) ý:1). it is an easy matter to show that .41 = A42 z 3/4

And B, B 2 = 1/4. Thus, the wavefunction for the standing wave in the symmetrical

Iop is given by,

I,(x) = cos(kx) - -, sink•nx), 35)

where x can be either x, or x2, and its absolute value is plotted in Fig. 21(a). It can

be seen that at this incident energy, the incoming amplitude at the branch point BL

is one. and the outgoing amplitude at the other branch point BR is also one. Hence

a standing wave around the symmetrical loop corresponds to perfect transmission, a

opposed to the zero predicted by the numerator of (23). For the case of a standing

wave in an as;'mmetrical loop, we find from (230 that t= 0 and r = 1, which yields.

• 1-- 2kL, B- = 1- (2,kL, t36)

___ 2 _2ekL2

, 2- - B 2 = -e2kL2

I The corresponding wave functions in each arm of the loop are given by,

"2sinak(L1 - x1 )]I i,)i sz'n( kL,)38
_2sa~ k( L2 - X2 )] (39)

- sin(kL2 )
II

Plotting this wave function in Fig. 21(b), we see that in this case the wavefunction is

zero at the out-going branch point BR, but nonzero at the in-coming branch point BL.

I Therefore. a standing wave around an symmetrical loop corresponds to a transmission

zero. as also predicted by the zero numerator in (23).

I The charge accumulated in the strongly-coupled loop is shown in Fig. 22. Part (a)

and (b) represent the symmetrical and the asymmetrical cases, respectively, and the

same units for the charge are used in both parts. The arrows at the top axis indicate

the location of the poles. Note that for the strongly-coupled symmetrical loop in part

23I
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",t) lie arrows also indicate the positions ot transmission maxima, which are iue to

;he existence of true-bound states leading to the canceliation of the zeros and poles
S tie reau-energv axis. Maximum charge accumuiation in the tsvymmetric loop aiso

occurs at the formation of quasi-bound states. as shown in part (b) Note that this

resonant charge build up is rather sharp in energy. and that it is more pronounced I
than for the symmetrical loop.

We have also investigated weakly-coupled loops which are formed by the addition

of two small tunneling barriers at the two branch points to the leads. Figures 23 and

24 present the transmission amplitude in the complex-energy plane for the weakly-

,oiipled symmetric and a-symmetric loops. respectively, as schematically shown in the I
Alsefs. Because of the confinement provided b' the barriers, the poles move closer to

:he real-energy axis which correspondc 'o the increased lifetime of the quasi-bound

states. This is true both for the isolated poles, as well as for the zero-pole pairs.

Smnilar to the weakly-coupled t-:;tubs. thc close proximity of the zero-pole pairs ieads

to a sharp variation of the transmission coefficient on the real-energy axis. I

V. CONCLUSION I
We studied transmission phenomena in quantum waveguide systems in the pres-

,'nce of resonant cavities. In particular. we investigated the analytical behavior of the

transmission amplitude in the complex-energy plane. For the single-moded quantum

wires under study here, the dynamics is (Inasi-one-diliensional. This also allows us

to compare directly the much-studied problem of double-barrier resonant tunneling

1o 0he lesser understood case of transmission in quantum wire systems; DBRT can

be viewed as transmission in a channel which also contains both barriers. One of our

Main conclusions is that the analytical behavior of the transmission amplitude is dif-

ferent depending upon whether or not the resonant cavity is part of the transmission

24



I
ruaninei. Ps for l)R.or is htl.aCtieo to the channlei, like t-stubs or loops. If the main

transmission path is directly through the resonantor. the transmission amplitude only

I exhibits poles it the complex-energy plane. These poles give rise to the well-known

Lorentzian-shaped Breit-Wigner transmissior. resonances. If in addition to the di-

I rect trans.nission path there is an additional path due to an attached resonator, the

transmission an 'ude exhibits zero-pole pairs in the complex-energy plane. The

vicinity of these zeros and poles produces resonance/antiresonance behavior of the

-- transmission coefficient.

It v&- noted bv several workers in previous studies that the transmission coef-

I hcient in quantum waveguide svytems exhibited a qualitatively different behavior as

, ompared to tile familiar case of DBIRT. Our research shows that these observed sharp

variations 4f the transmission coefficient as a function of energy' can be understood in

3 t.-(rms of the zero-pole pairs in the complex-energy plane. The proximity of the zero

and the pole which is produced by each quasi-bound state leads to the sharp energy

I dependerce. Furtheremore. we showed that the existence of transmission zeros for

resonantly-coupled waveguides is a consequence of unitarity, regardless of the sym-

ietrv of the system. In other words. reflection peaks with amplitude equal to 1 ocur

fur syvitnetrical as weii as for non-syrnmetrical structures. In contrast. transi. I

iwai;s with an airiplitude equal to I oniy occur for symmetrical structure,. This resal

I is finmili',r from DWiRT. where it is known that perfect transmission only is possible

il)r symmetrical iarriers. In related studies. Price 1601 distinguishes between peaks in

tramisinision, which he terms resonmnces of the first kind, and dips in the transmis-

"3 51011 CoetfiLient, which lie terins resonances of the second kind. lie also shows that

lOe peak vaiue of the reflection probability, corresponding to the resonances of the

I ,ccond kind,, is always I regarciless of t he s'na.,etry of the systeIli. iII colitrast to the

I anM;i.iuioi resonance case i resonan( es 'if the first kind). This behavior is shown to
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')persisit in the case of multichannel ballistic transport iiill.

.\riother striking difference between DBRT and tile waveauides is the location

,4 the transmission peaks relative to tile poles in the compiex-energy plane. From -

1)[3RT. one is used to associate the location of a transmission mna.ximum with the

energy of a quasi-bound state, which are represented by the poles. For taitsmission n

in waveguides with attached resonators, the quasi-bound states still are given by the

poies in the complex-energy plane, however, their location does not match the peaks

in the transmission probability. Each quasi-bound state now is represented bv a zero- 3
pole pair. where the energy of the pole is close to th( energy of the zero. Transmission

maxima occur somewhere between the zeros where the exact location of the peaks

.kpends upon the proxiMnitV oI the poles to the zero and to the real-energy axis.

Therefore, it is no longer valid for the quantum waveguide structures, to . .e

the energy of a transmission peak with the energy of a quasi bound state.

In summary, our main conclusions are: (i) Transmission zeros exist in quantum

waveguide structures with attached resonators, and their existence is a consequence of I
unmit.arity: this result is in contrast to 1BRT where no transmission zeros are possible.

1ii) For the quantum waveguide structures, each quasi-bound state of the attached

resonator leads to a zero-pole pair of the transmission ;mnplitude in the complex- 3
,incrgy plane. iii In a fashion similar to DBRT, sv... ietrical waveguide systems

possess peaks with perfect tr .. ion. (i\ ' In contrast to 1)BRT, the location of U
'ime transmiý..- n maxima in resonantly-coupled quai.'unm waveguides does not give

the energy of the quasi-bound resomiantor states.
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APPENDIX A: NUMERICAL CALCULATIONS

S1 1. MODEL

3Utilizing both wavefunction matching and finite element methods, the time-

independent Schr6dinger Equation is solved to obtain the transmission amplitude in

3�the complex-energy plane for both double-barrier resonant tunneling and the quan-

turn waveguide structures. We assume that an incoming wave with energy E incident

;upon the system from the left, results in a reflected and transmitted wave, as sch.-mat-

3 iicallv shown in Fig. l(a). The wavefunctions in the asymptotic regions on the left

arid rIght are given by:

I LL(xk)= expikx) + rik) exp(-ikx) (Al1)

3 'f(x. k) =t(k) exp(ikxr) (A2)

Here k = vn/7-E,/h is the complex wavevector variatle, and r(,-) and t(k) de-

note the reflection and the transmission- amplitudes, respectively. The effective mass

Sm =0.067mn0 is used in the calculation, where m0 is the free-electron mass. In this

'reatrrtent. wve neglect the effects of charge accumulation and inelastic scattering.

The transmission amplitude t(k), ,r ti E). for an in-coming wave with wavenumber

o. ur energy L. is then obtained from lhe out-going wavefunction 1 'R by

tk) = ,R(xo. k) e-' 
,kI

I .with xe fixed. The traiismission atriplitude may also be obtained from the Creen

function. If we denote the out-going Green propagator by G+(x, x'; k), then

II I parate section below, we discuss how the Green fuoictic-ii readily is obtained

.,I Ili,- inite element method.

I
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11. \VAVEFU.N,_'TION MIATCIHING METHOD -

This technique is very useful if the problem domain consists of sections in wnich

tine potential is constant. One may then write the wavefunction in each section as a 3
superposition of left- and right-going waves with unknown coetficients. The matching

,ondictions for the wavefunction and its derivative at the encipoints of each section I
,ead to a linear system ot equations for the unknown expansion coefficients. Below.

we show as examples the results of a weakly-coupled t-stub resonator and a strongly-

coupled loop.

1. Weakly-Coupled T-Stub

Flie exampie t-stub structure is schematically shown in the inset of Fie 9. ,where

a t-stub is weakly-coupied to the main transmission channel by a tunneling barrier. I
The stub length is denoted by L. and a tunneling barrier of length I and height t') is

,ocated at the branch point. Choosing the branch point as the (ourudilate urigin, the

wavefunctions in each region are given by,

L kL + re-zL(xL < 0), A3) 3
ý-'R tC R" (XR > 0), i.A4)

:.,R = BBCs KB S ( 0 < xs < A). ,A5) I
=S Ase'" 5 + Bse (1 < xs < L). A6)

\Ve denote -lhe wavenurnber of the propagating waves by k = vm-rnE!h. and of -

the decaying waves by N = v2m((E - 1,0)/h. which is for the wavefunction in the

harrier, I.'S • The spatial coordinates XL, x,, and x, represent the left, right. and stub 3
branches. respectively. Using the matching conditions for the branch point, which are

iiscus~ed iII section IV. .\, ve obtain. I
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1 -I- r=t

1 + r= .4A + BB13

r - K-/k)(Ag - BB) +t
(A7)

.A-se'k + Bse--' A + Bee-'Km

-s, - Bse-,'i= (Kik)(AsedB I - Bse-')

.4sc'kL + Bs -,kL 0

['he above system of equations is sufficiently simple that it can be solved analytically,

and the result for the transmission amplitude t is given by eq. (22) in IV. B. In

general. the resulting linear system of quations has to be solved numerically.

2. Strongly-Coupled Loop

We also present as an example the so-called strongly-coupled loop structure which

is schematically shown in the inset of Fig. 21(b). We choose the left branch point

BL as the coordinate origin for the left branch and the two arms of the loop, and the

right branch point BR as the origin for the right branch. Then the wavefunctions in

each region can be written as,

L =re ((L < O) (AS)

L'R = W ZR(x > 0) A9)

I.'A = Ale"" + YjeI-'k'(0 < x, < LA10)

-1'2 e, + B 2e-k 2(0 < r2 < L 2) (All)

Here. f- and ZR are the coordinates of the left and the right branch, and xl and X2 are

the coordinates of the respective arms of the loop with length L1 and L2, respectively.

IUsing the matching conditions discussed in section IV. A for each branch point, we

obtain.

I

I



I
+r =Al -B,

4- r=.-Ii- R)

1- r--. 11 B 1 ) + 1 A2 - 832) 3
, :\12)

f A ,, ',16 ' - B C1 - m• L j 
I

t A 2- C42 ' L2 -F B 2 eC- 'kL2

t = {I e'-kL- B -ekL 1L + (A 2e shL2 - B 2 e-tkL•2)

These particluar equations can be solved analytically, and the solution for the trans-

mission amplitude is given by eq. (23) in section IV. C. Again, for more complicated

Loop structures the resulting linear system of equations has to be solved numerically. 3
111. FINITE ELEMENT METHOD

For systems with complicated potential variations, it is convenient to oiscretize

the problem domain and to evaluate the wavefunction at a set of nodal points. Be-

tween nodal points, in each so-called finite element, the solution is approximated by

linear basis functions. We typically divide the structure into 60 elements. and the en-

ergy mesh is 300x50 for quantum waveguide systems and 200x30 for double-barrier 3
resonant tunneling. In the vicinity of some of the very sharp zero-pole pairs. the

:eai-energy axis is further refined. typically by some 6000 nodal ,)oints.

1. Formalism -

For the problem domain 0.aui. which contains the potential V, the one-

dimensional Schr6dinger equation.

2rnh 2 .. + u V (A 13)I
2m

(lan be written as,

A" 0, N =2-mn(E- Vl/h 2  (0 <x < a) A14) -
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I=
U. r' -*.' O k'E,.IIIix < O~x > a) IA\15)

he regions outside proe min ale ,ssume to be potential free. For an in-

,coming wave from the left, which gives rise to a reected and a transmitted component

Icompare Fie. l(a)) the boundary conditions at the edges of the problem domain

are.

= + (A 16)

I (A 17)

I 'sing a zest function o. the weak variational form of (A.14) is.

I A" 1, - -, = 0 .\S)

Integration bv parts yields,

,'a)vta - .' (tO)o(u) - J "'odx + J Ao dz=O. t.-9)

We now discretize the solution domain, and define n nodal point coordinates x,, where

I . corresponds to x= 0. and x, to x = a. Furthermore, we expand the wavefunction

and the test function o in terms of their values at the nodal points V, and o,,

I respectively, and in terms of shape functions [

nu 1A20)

II = oL' iA21)

I I'sing the property of the shape functions that U1.(x,) = 6U, we obtain at the boundary

of the solution domain.

I i-a) . oa) =o,, i22)

I ,.,(0) = -' o(O) Ao. .23)

I :31
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I

\V'itii :\A16)-(A17) and (A22)-(A23), .\19) can now be written as.

lk,,,o, - ,k[2 - i.',jol - - odx + / K2 '.'odx = 0. V 424)

.\fter substituting tA'U)-(A21) and some rearranging, kA2 -1)becomes.

+ - _) -1 (A25)

.:= Wil 
I ,U U d

which can be written as,

-2zi.k O jb,, (A26)I

-=1I

r 1i
-- 2o: U f, - th ., N/ LU,U drv., + lkz',,, + ikz., .

>ince o is an arbitrary function. the above equation must hold individually for each 3
term in the sum. Remembering that A" = - 2m V/h 2, (A26) can be written in

:nat.rix form as.

[C- k2Q - IkBlw = P. iA27) I

This is an equation for the wavefunction contained in the vector V. The vector P 3
represents the forcing term due to the in-coming wave, and C, Q, B are n x n matrices,

wien by

C,(, = ,0UUdx + (2m'/h'2)] lr[:UUdx A28)

(,= t- U-,Udx A29)

Bl. =ý ,6,n6, + 6b6u, (A30)

P. = -2ik6bl kA31) I

Finallv, we define the matrix .4 as.

.4-= C- k2 Q- ikB. .,2) -

:12
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and (U27) becomes,

.4 = P. A33)

IT[his is the finite-element discretized form of the Schr6dinger equation. We can now

find the wavefunction of the system by solving the above linear system of equations,

and we can then determine from the solution vector ., the transmission amplitude.I
2. Matching Condilon at the Branch Point, Z=, w -- 0

IThe matching condition Z,_ v = 0 at the branch point may be included in a

natural way in the finite element method. The Schr6dinger equation in each branch

reads,

I -h 2 /2m'v'" _- Vz.'i = Eu,. ,A34)

where i=1,2,3 ., n labels the various branches. Applying the weak variational form

of the finite element method yields.?I I [a. V,
I(a,)o4~a1 ) - u:(O)p(0) - o'J dx + j K 2i..iodx = 0. (A35)

Here, the coordinate at the branch point is chosen to be 0 and the other edge of the

domain in the i'h branch is denoted by a,. When adding the above equations for all

branches, we obtain a term.

I Z A :36)

Since both the wavefunction and the test function are continuous, our matching con-

I dition at the branch point make this term vanish,

0(0) ,.."(0) = 0. A3 7)
t

Therefore, the internal boundaries at the branch point do not introduce additional

terms in the finite-element matrices, and only the external boundaries of the solution

domain enter in the final matrices A- and P.
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I
I. Green Function 1; -.

Here we prove that the G;reen function (; is given by (, -. where A is the

coefficient matrix defined in iA32). The Green function is defined by.

('"(x.'. E) + i/C2G(xx'. E) = ,(x -x'). (A38)

As for the finite element method. we now integrate over the soiutir:, doma.in [0. a],

J G"(x..rZ. E)- A 2G(x, x'. E) - 6(x - x)V(x. E)dx = 0 (A39)

where V(X, E) is a test. function. Integration bt parts yields,

6 7','r. E)V'(r. E) - (,'x. x'..E)V x. E)l dx 'A40)

. I , ,.Z E)V(a. E) + G'(O. x'. E)V(O. E)= 0.

Discretization of the solution domain introduces the values of the Green function Gi I

at the nodal points r, and X,.-

-;(X. X'. E) =ZZG~jE)(U1,(x)U,(x'), IA41)
I=] J=1 I

Vi'x. E)= 1 i(E) j('•( ), (A42)2=1 I

where U , is the same shape function as in ýA20) and (A21). This yields.

foIG(, xz~'. E) V(x. E) dx = V, (=Ot E)U,;xiZ1, Gj, (A43)

;(. z', E)I"(x, E)dx = Vt(E)U'(x')QiG (A44)
fo1

With.I

7,, = f /T_'(dx, (A45)f0" (A5
C= U'U, dX. (A46)
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I
Note that Q is the same matrix as defined in A.-\29). For the boundaries at the edge of

the solution domain, we use our knowiedge of the Green function for free propagation.

I(-x, x',E) = ,x < Ox "; a). (A47)2ik

I .\t ibe boundaries x = 0 and x = ui. we then have the following conditions,

I G'(a, x', E) = IkG(a, x'. E). (A48)

i 7'(0. x'. E) = -I.kG(O. x', E). (A49)

V/sing i.A37)-(A38) and the equality L,(a) = U,(O) = 1. which is a property of the

I shape functions, we obtain

I(r'(a.xr'. E)Via. E) 1'!(E)(' (r''Ik61 't~1nGj,, .\50)

G'(O, x'. E)=V 0. E - I (EE)b", (z')[ik66Gj,. (A51)

We now define as in (A30),

i B1  = 6,,11, -r 6,611, (A52)

and after substituting (:\46)-(A47) and (A38)-(A40) into (A36), we finally obtain

I 'r £ '}(E)j:(r' I C}-(•,, - k--'2Q,,- IkB,,G,, + 61• 0. (:'%53)

where C1, = Z. + t2rnm/h') fo l't'U',.dx which is the same matrix as in (A28). We

Imay now define At, = (C~I - k2 Qj, - lk-Bh,) which is an element of the same matrix as

in (A32). Since V is an arbitrary test function and the shape functions U are linearly

I independent, the Green function G and A are related by

I = -I. (A54)

I Q E. D.

i :15
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APPENDIX B: ',NITAMITY AND ZEROS I

Proof of the Existence of Transmission Zeros 1

In this section. we prove that, for ail e.,,ergies.

VS tab I SB.

which ensures the existence of transmission zeros.

Let o-rs - tRStSL/tR.. We will prove (BI) by demonstrating that a" 1.

no' = r * tRStRstSL;L -rtRStSLL - rstRstLtSRL

5 ".I tRRýL tRLt0R tRt"L I
The unitaritv of the scattering matrix renuires:

rLr"L + tRLt'RL 4- tSLSCL .BT3)

tRLt*L -t-rRr"R -r t1sts . ,B4)

.1 SL L t RS t'RS -r rsr" - ",35)

•and.I

rLtRL -r-tRLrfl+ tSLtRs =O 0(136)

rLt'SL + tRLt,?s -t- . iB7)

~RO t;L ý T t~5 1RSr' I). 0 BS')

We now substitute tB7), r*tSL -rLt*L-'- tRL t S), into the third term of (B2) and I
:he complex conjugate of (BS). r 5 t~s = -ttLtSL -r r~tRS). into the fourth term We

lefine J a-s the sum of these two terms, which is given by,

= -rtSLt*lLtRS - r."tRStRLt'L

tRLtRL tRLtIL

---rL t ALtR+ tROstkLtRS" " týRSLtRLt(b Lt+ rRtRStRLtSL

tRLIR tRLtRL

= tRst -- t'5L'tSL -r- tLtRS(rLtRL -r- r tRL) (B9)

tRORL

I



I
I L.bstituting it back into t1B2) and using (B3)-(B6) gives:

" --rsr* +tRStR4- tnsttSIS tS "," tý tLIR StrLt -RL - Rt

(~ r r~ + t~ sRS -ý- t'0t5! + 'RtRL tRL 1RL
tRStRStLStSL _LRS(--tstS)

tRLtRn IRLtRL

I Q.E.D.

2. Proof of the Existence of Transmission Ones in Symmetrical Structures

In this section. we prove that, for a symmetrical structure,
I ~ ~~rs - -L- : I Bl(SLtSL ,111

I which ensures the existence of transmission ones.

Instead of proving TRL = 1 directly, we prove RL = 0, which implies

A -= rs - tSLSL B 12)

r r,
If the modulus of the r.h.s. is one, which is condition (311), zeros in reflection, and

:hus ones in transmission, must exist.

Let a=rS-tSLtSL/rL. Condition kB11) then requires jai = 1, which we will prove

Iv demonstrating that n =1.

(ice' °= r;rs SLI- - r~t -rS(tsL)"rL (B13)

IrLI

We now substitute (87), r'tSL = -(rLtL+ RLtns), into the third term of (B13) and

1B7). rtsL = -(tRLtýs -I rstSL). into the fourth term. We define 3 as the suin of

these two terms, which is given by,

3= -rst2m"'L - rs(t2•0)rL

:.SLI' 1rL, -- 'tSLI IrSI + tRLtRs(tSLrL 4- rgtS.L)

I rL---

37I
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I
btibstitut Ig it back into 11313) and using BB7 giveIS.

~-r tS[r'- "LII!~ "- *'fliL~ l•_
2 !tsr 2 -L 1 ! RS; t I" i.'

:t s[l 'rl ýtýZL1 -- ,r !* I RSI" - :iR i [ t,qI " R

rL; I -

*'sing 1351 in the first two terms oi tile above numerator. and 1i 3:) in the last two

terms, yields
StcLj21 -I Rt q

2  - tISI (1 - it SLiB1
-m' 1 -,- 2 tB~ 16)

-rLI

i tsL I - tRsi')

For svmmetricai systems. t.L = xus which proves 1311.. , ,th symmetrical

-tructures shown in Fias. -' possess I ransinission ones.

For the non-symmetrical structures shown in Figs. 9-10. ':tSLi" = .';sI. and no

trensmission ones exist. Condition B311) is not satisfied in this case. I

APPENDIX C: SCATTERING MATRIX

Here, we show that our result for the scattering matrix in thin wire networks,

whfch we derived in section IV.A. is a special case of previous work in which the

",oupiing of a ring to a lead was studied '38.-41. 121. It was shown in Ref. '381 that I
I he scattering matrix is determined by three parameters in the form.

'a -,1) t0/2 1/2

27 = 0!i• a b C1)

e +i/2 1 a C I
lUnitarity imposes the following constraints.

.C2)I

'+ b: • .(C3)-

318 =



Flie parameter t. which ranges between 0 < t < 1/2, measures the strength of the

coupling between the lead and the ring. A onmyletelv detached ring corresponds to

I= I. and maximum coupling is assumed to ,cur tor ( 1/2.

However, we noted in previous work [12] that the strongest coupling occurs for

I =4,1) and not for e = 1/2). A\ccording to (C2) and (C3), c 1/9 corresponds

to the following values for the other two parameters, a = -1/3 and b = 2/3. The

resulting scattering matrix for these values of a and b is exactly the one derived by

3 us in section IV.A, i.e. eqn. (20.). We conclude that our choice of the matching

conditions at the branch point leads to a scattering matrix which is a special case of

I .:he general form (CI) for the parameter value = 4/9.

I
I
I
I
I
I
I
I
I
I
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U
I FIGURE CAPTIONS

Figure 1. Schematic diagrant of resonator structures coupled to two leads: ,a)

I hoews an incident wave from the left with its transmitted and reflected components;

b) presents typical resonator structures. such as double barriers, t-stubs. and loops;

:he sihaded boxes on the waveguides represent potential barriers.

I Figure 2. Transmission coefficient for a double-barrier resonant tunneling struc-

'ure which is schematically depicted in the inset (V' = 0.2cV, V = O.1eV, L -

Wnm.andb = 5nmr; (a) shows the transmission probablility on the real-energy axis,

3 and ih.) shows a contour plot of the absolute value of the transmission amplitude in

lhe complex-energy plane.

I g.iizure :3. Phase of the transmission amplitude for doubie-barrier resonant tun-

3 ieling for the same structure as in Fig. 2: (a) shows the phase of the transmission

amplitude on the real-energy axis. and (b) shows a contour plot of the phase in the

3 compiex-energy plane.

3 Figure 4. Charge accumulated in the well region for double-barrier resonant

tunneling for the same structure as in Fig. 2.

I Figure .5. Schematic drawing of a waveguide with a resonantly-,coupled cavity: (a)

, kows a wire branch with incoming and outgoing waves outside the junction region.

which is indicated by the dashed box: (b) shows a resonant t-stub which is obtained

by closing-off the side arm.

ioFigure 6. Schematic representation of the condition for the existence of transmis-

sion zeros. which occur when both phasors coincide on the unit circle.

I Figure 7. Transmission coefficient for the strongly-coupled t-stub structure which

is schematically depicted in the inset: (a) shows the transmission probability on the

I 45I



I
:Oal-energy axis, and (b) shows a contour piot of the absolute value of the transmission

amplitude in the complex-energy plane.

Figure S. Phase of the transmission amplitude for the strongly-coupled t-stub I
,same parameters as in Fig. 7): (a) shows the phase of the transmission amplitude on

the real-energy axis, and (b) shows a contour plot of the phase in the complex-energy

plane. Note the existence of zero-pole pairs.

Figure 9. Transmission coefficient for the weakly-coupled t-stub structure which
is schematically depicted in the inset: (a) shows the transmission probability on the

real-energy axis, and (b) shows a contour plot of the absolute value of the transmission 3
amplitude in the complex-energy plane.

Figure 10. Wave functions in the stubs corresponding to the lowest transmission U
zero (solid line) and transmission one (dotted line) for the t-stub structures shown 3
in the insets: (a) strongly-coupled t-stub (same parameters as in Fig. 7), and (h)

weakly-coupled t-stub (same parameters as in Fig. 9,.

Figure 11. Wave functions in the stubs corresponding to the second lowest trans- 3
mission zero (solid line) and transmission one (dotted line) for the t-stub structures

shown in the insets; (a) strongly-coupled t-stub (same parameters as in Fig. 7). and 3
ibi weakly-coupled t-stub (same parameters as in Fig. 9).

Figure 12. Charge accumulated in the stubs for the structures shown in the insets'

1a) strongly-coupled t-stub (same parameters as in Fig. 7), and (b) weakly-coupled 3
t-stub (same parameters as in Fig. 9); the arrows indicate the position of the poles

which correspond to the quasi-bound states. I

Figure 13. Transmission coefficient for the weakly-coupled t-stub structure which 3
is schematically depicted in the inset: (a) shows the transmission probability on the

4
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I
I :!-al-energy axis. and ib) shows a contour plot ,, t "Ie absoiute vaiue of the transmission

,inplitudf" mn tie complex-energy plane.

I Figure 1i. Transmission coefficient of the weakly-coupled t-stub structure which

schematLically depicted in the inset: ta) shows the transmission probability on the

reai-energy axis, and (h) shows a contour plot of the absolute value of the transmission

amplitude in the complex-energy plane.

Figure 1.5. Transmission coefficient for the weakly-coupled t-stubs shown in Fig.

S14 for different separations between the two tunneling barriers on the transmission

Ichannel, which are 4.6. Snrn for ka). (b). and ic). respectively: the left column shows

•he transmission probability otn the real-energy axis. and the right column shows a

contour piot oe the absolute value of the transmission amplitude in the comtplex-energy

plane: part (a) is for the same parameters as in Fig. 1-4.

Figure 16. Phase of the transmission amplitude of the weakly-coupled t-stub for

the same parameters as in Fig. 15(b): (a) shows the phase change of transmission

amplitude on the real-energy axis, and part i b) shows a contour plot of the phase in

the compiex-energy plane.

Figure 17. Transmission coefficient for the asymmetrical t-stub structure which

.s schematically depicted in the inset: ,a) shows the transmission probability on the

real-energy axis. and (b) shows a contour plot of the absolute value of the transmission

amplitude in the complex-energy plane.

Figurc 18. Transmission coefficient for the asymmetrical t,-stub structure which

I is schematically depicted in the inset: (a) shows the transmission probability on the

real-energy axis. and (b) shows a contour plot of the absolute value of the transmission

I amplitude in the complex-energy plane.

Figure IS. Transmission coefficient for the strongly-coupled symmetrical loop

I 1"

I



I
"w'hich s schematically depictec in the inset: ,a) shows the transmission probability 3
,,n the rea-energy axis. ari (hb shows a contour plot of the absoiute value of the

ransmission amplitude in the complex-energy plane. 3
Figure 20. Transmission coefficient for the strongly-coupled asymmetrical loop 3

which is schemat.icallv depicted in the inset: (a) shows the transmission probability

on the real-energy axis, and (b) shows a contour plot of the absolute value of the 3
transmission amplitude in the coniplex-energy plane.

Figure 21. Wave functions for the strongly-coupled loop structures shown in Figs.

19 and 20: BL and BR denote the branch points at the left and right, respectively:; I

ai wave finction for the lowest bound state in the symmetrical loop which results

mn a transmission one: (b) wave function for the lowest quasi-bound state in the U
<asvmmetrical loop which results in a transmission zero.

Figure 22. Charge accumulated in the strongly-coupled loops shown in Figs. 19

and 20: (a) symmetrical loop, and (b) asymmetrical loop. The arrows indicate the 3
position of the corresponding poles.

Figure 23. Transmission coefficient for the weakly-coupled symmetrical loop

which is schematically depicted in the inset: (a) shows the transmission probabil- 3
itv on the real-energy axis, and (b) shows a contour plot of the absolute vaiue of the

transmission amplitude in the complex-energy plane. 3
Figure 24. Transmission coefficient for the weakly-coupled asymmetrical loop 3

which is schematically depicted in the inset: (a) shows the transmission probability

on the real-energy axis, and (b) shows a contour plot of the absolute value of the 3
transmission amplitude in the complex-energy plane.
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Sateral p-n junctions between quasi-two-dimensional electron and hole
r stems at corrugated GaAs/AIGaAs interfaces
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We report on a numerical study of the potential profile and energy states of lateral p-n junctions
at the GaAs/AIGaAs interface. The Junctions arise from the amphoternc nature of Si doping
dunng molecular-beam epitaxial growth on { 100} versus ( I II} surfaces and have been
previously realized experimentally through selective chemical etching. We find that the
occurrence of a lateral p-n junction is sensitive to the doping of the overlayer and for Si doping
concentrations less than 5 x 1017 cm- 3 in Al0 3Gao0 7 As, the p-n iunction vanishes. We have

I �,tudied the formation of a quantum wire in a V-groove structure and show that a
cne-dimensional system is in fact formed which may be controlled by the reverse bias applied
between the n and p regions.I

INTRODUCTION ,ures which use metal gate electrostatic confinement or
sidewall etching (see. e.g., Ref. 10).

During moiecular-beam epitaxiai (MBE) growth of GaAs We have theoretically investigated the properties of
d AIGaAs, Si dopig is observed to be amphoterie de- such quasi-2D p--n junctions for various layer structures

nuhne on the substrate onentation. While growth on and doping conditions. Using a 2D finite-element method,
:YJ), surfaces invariabiv leads to n-type doping, Ballingall we determine the potential landscape, and the electron and

Wonc~o observed both n- and p-type electrical behavior hole charge densities at the interfaces by solving Poisson's
il 10"t urfaces depending on the growth temperature.' equation within a semiclassical Thomas-Fermi screening

,type behavior has been reported for ý.Vll)A (N model. Given a certain potential profile, we then solve
= .2.... sucfaces (Ga terminated) while n type is found Schrodinger's equation for the quantized electron and holeI row th on GaAs {Xl I }B surfaces (As terminated). states at the neterointerfaces in one spatial dimension. We

[is behavior in the case of { Il I}A surfaces may be un- discuss the design of a novel quantum wire structure at the
.ýrstood from the Preferential incorporation of Si onto As corner of an etched and overgron V groove as mentioned

iatti:e ýites where Si behaves as an acceptor, rather above. Among the interesting properties of-ucn a quantum

cn the --iore entergetically favorable incorporation of Si wire structure. .:r the coexistence of ouasi-2D electron
wio 6i', sublaitice sites where it behaves as a donor) and hole states next to a quasi-ID electron or hole system.

nd arl most cases.
1TiroDuh the uýe of seiective ýhemical etching, it is pos-

te !o r'oduce IIII'A facets on i 100} surfaces. With
:ri.•xiai recrowth. one may then obtain regions of both -I II. MODEL SYSTEM

de doping on the same surface. This idea was used
V iler to fabricate lateral GaAs p-n junctions which The modei geomeiry for the study oft lateral P-,7 junc-
"-noismtrated good diode I-V characteristics. Using Si- tions is schematically depicted in Fig. 1 A 500 A thickIred AI. -Ga, -As rather than GaAs during epitaxial re- layer of Si-dopeo .-\l, 1Gao)yAs is overgro\%n )n a semi-

twth, Ebner et al. re'ported electroluminescence corre- insulating GaAs substrate with an etched V groove. The
-wondine !o the GaAs quantum well band gap, suggesting substrate terminates in a ( 100) plane, whereas the side-

I._\is tence of a quasi-iwo-dimensional (2D) p-n junc- walls of the V groove are members of the I 111 ) family of
at the corrugated GaAs/AIGaAs interface. The ability planes. f-he angle between the (100) and ( II i )A plane is

:ioricatc lateral p--n Junctions hetween high mobility 2D 54.74'. As shown in Fig. i, n-type doping is present for the
anc) electron gases allows for a variety of novel com- (100) plane. and p-type doping for the { Ill } planes. The

mefntarv de'ice struutures. V-groove structures have composition and laver thicknesses are chosen to match
Sreported in the literature which result in quantum those used by Ebner et al.5 in fabricating a lateral light

,;:c structures that may be employed, for example, in one- emitting structure. Also shown is the heterointerface be-

nensional ( I D) semiconductors. f By utilizing ampho- tween GaAs and AIGaAs. For suitable doping conditions,
Ic Sm in such a V-groove structure, a lateral p-n-p quan- a 2D electron and hole gas i 2DEG and 2DHG, respec-

urn wire rmay be realized. This novel way of fabricating a ively) forms along this interface.Inum \k ire structure with lateral n-p junctions may of- We study the potential profile in equilibnum for this
some advantages compared to present unipolar struc- spatially 2D model geometry. Within a Thomas-Fermi
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I t00 :-ear the heterointenrOCC !he notential profile changes rap.
-1,., 'k., \ ,,,. )aer a c ,v anometers 'i:,, -:uires a k2:gh1 ýýon ni.

, i,,r. -rm erd Mch isc coarse in the ouwk an,,; etv tine cose t.
h.e nierfaces and in the overgrown laýer. This nonuniform

,. \-n .incn )t -;Csl ,S aiso otesigned to presers, 1'.1,e angle between crs..-'•-...l~,.,a i,:•.:!r c':,,n,,tr]-.M~iVIGý .... ructure.

tn 'Ve uVCs the lilte element method and Newvtcn-Ranrso U
;s.otion lo \olve the nonlinear Pi,,.on equatin Nthin a
[iomas-Fermi ,creening model. ',Vn-Neuman and D1.
richiet boundary concitions are s•,ed it the d•,e of the
r-robiem oomain. F.,r inside the ,u,,zrate. he potent al U
_ixeu at a 'saiue set b% the background 'loping and b . the

requirement of space charge nieutraiits in thle bulk. The
potential at the Al,,:Gao-As i ;(kv and . III ) surfaces is

.-' : cmac ailaerm .-I >1 :Ic ni,,ci occ mc-. Jssumed to be pinned due to sUrtace states at the usual

• aiwe of 0.S eV t.eparatloni bet\%een the conduction bandn
-.'emni model. :he electrostatic .--•ent! 7,' r ltoter- ce and the Fermi lev.el. Dirichlet boundary ciditions

"I' ;he iett and righi -ides of the ,-'iutIon domain force the
~nes " c::estrinution ofcharge and. as, a .,.ncuueii:c. thne potential to be flat. \%hich .imunates ance alone the

"'iaid >enaing resuitin2 from Pl :':-on '.uiicn, heterointerfaces lar trom the ,-,: 'unciiis in s

- ,...,: - . - .i lonunitorm triangular mesh AT 5rsi r I
X. rent Ch.apeau basis ,unctions v.5 rIcal fesh ,1
...nproximlateiy aXo5 :odes in wi, e oargest e!ement nar

S:aracter~stics It the if1e! ent niateriais enter through r.rn the heteromterface ,as an .re,: . •
t!e dop:ng densities and the nand discontMMuites at the utie smallest element close to he teteroin h

:mitermnterfaces. The amphoteric Si-doping densities con- area ot -0 A.
:7nute .V n the D-type javers and .7 n the ,;-type lay- The tinite element method results in a large system oI
-'r- Comrie.e ionization of the impurities is assumed. The linear ecuations for the unknown potential at each nodal
ci-ctron and hole densities are denoted by n,) and P(r-). point. We employ band \vidth optimization and sparse ma-
respectiveiy. For degenerate statistics. !he electronic tnx methods for an effcient numencal solution. A san-3
-narce deisityv g.Tiven bv the Fermi-Dirac nterai of or- dard LU decomposition method , ued to e he nea

....... . . . .. -here i e -e y .%stem after it has been reduced ,o si,% line band-s' mmetric

-. ion tetween the lcat conduction iana edge E,( orm. Most numerical computations are performed on
ýn 'e Form:level E, measured in units of ,,,.: Convex C-2. the solution of P.,issons equatin tpicallU

= -- E. - E• -'T." / '..-\ Aimflar relationship aopiies r s 925 of CPU time
'!-e hole aensitv All our caiculations are performed for We also solve Schrodigers cuuation or the r suitn4
--- temperature. potential profiles. Solutions are !ound for the ID problei

We also study the uuantum-conrined electronic states at perpendicuiar to the heterointerfaces This gies us ntor
i-c ueterointerfaces by 'ýoling the Schrodinger equation tiatuon regarding quantum continement in the 2BEG and

,r a Oien potential landscape. We are particularl] inter- 2DHGs.
:steo in the formation of 2DEGs anri 2DHGs at the inter-
;aces between the substrate and the overgrown layer. To
-i.is end. we solve Schrodinger s equation :n the direction IV. LATERAL 2D p-n JUNCTION
-,rpcndicular !.. the heterointerfaces for the potential
..vhich \,.e obtain from Poisson's equation. We now concentrate on the portion of our model struc-

ture which is shaded and labeled "' .- n Junction" n th•
---- i V',(r) .- [r) -eo(r)}j,(r' Et,(r\ 2) schematic drawing of Fig. 1. Depending upot, the dopin

2n densities in the overgrown AIGaAs layer, the (100) an)

Hlere. ', r) includes external potentials and band offsets, .111l) heterointerfaces may display 2D electron and/or

,lc -rr, is the electrostatic potential obtained from Pots- note systems, respectively. A lateral '-p.n bunction will forr
if the Si-doping density is high enough to produce. at thU

-.on s equation.
same time, 2D e!ectron and hole systems along the hetero-
interfaces.

Ill. NUMERICAL METHOD Figure 2 shows the band profiles at the ? side of th
p-n junction in the direction perpendicular to the hietero-

The determination of the 2D conduction and valence nterface for several values of the Si-doping density Showb
,and rotenttal distnbution is a challenging numencal are the conduction and valence band edges, and the FerrrT

:'roblem. because of the compicated geometry ana the dif- !evel is displayed as the dotted line. As can be seen. a
!erent spatial scales in the problem. The size of the fabri- elertronic system forms for doping densities higher thal

cated structure is on the order of several microns, while Ai3 3 .. a0 7As. Figure 3 shows the corresponding informi
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"I :cr ,odes. The potential profiles are now plotted in a cm -.; The transition from p- to !i-tvpe behavior occurs
:,-ectton perpendicular to a (i I I} plane. Again. a 2D over a distance of about 0.25 Lim.
Ie svstem emerges for doping censitIes in excess of We also determined the energies of the quantum-

I l' .m Figures 2 and 3 illustrate the existence of confined states at the n stde by solving Schrodinger's equa-

u.ua cD arriers far from the lateral P-,i Junction. The [ion for the band profiles shown in Fie. 2. For a doping
d _arams in Figs. and 3 are snown at a distance of concentration of IX 10' cm -. %.e find the following val-
" n 2 ,.ern trom the i unction vhich is sufci- ientk tar to jes oc the energies for the lowest three o igenstates which

ueiariance of th'ese profiles with distance. are localized in the channel: 0.034, 0.060, and 0.084 eV.
FPue4 demonstrates the lateral p.-n junction. Figure 4

k5 the conduction and valence band edges in a direc-
- vio the i. 00) and ( I 11) heterointerfaces. respec- V 'M E

T'je transiton from p- to n-tvpe doping occurs at V. LATERAL V-GROOVE QUANTU WIR

i eeative %alues of the distance x correspona to the STRUCTURE

ni" -s•er . amnd positive values to the f 100) :nterface. As discussed earlier, a V-eroo~e etch may be used to

CX .'1T1(r21elCCe of a 9-,t Junction is clearly ..isible as !he define a quantum wire structure nased on the orientation-
m-ii,• ,sity ,.ncreases to levels iareater than 1,0' *eipendent properties of Si during NIBE growth We con-1 sider the structure shown in Fig I where a notch has been

o',rmed using an anisotropic etch leaving I I1 }A surfaces
• . . "., __'_, -.. i on the sidewalls. and a t R00) at the bottom of the trench.

The A, 5Ca,).As overlaver is assumed to he doped alter-
S-- , " . -- natelv i and p type ýcompare Fig. I)

.. ... The solution domain for the investloatton of the quan-

tum wire is shown in Fig. I by the hatched area which is

labeled "WIRE." Figure 5 shows the mesh used for the

,Arce Alo•i l ,I lium ) :nI e AJ , 1 i ; I

il~ce A il~liiI I Awet,.. ..

i Jant diagrams on the p side of the lateral p- ! unction lor secrai
• ,unccniaitions. [ie solid line represenis i;,c conduction band. the FIG, 5. 1 ne mesh used for the calculation of the potential defining the
;Jsraj line Ih! valencc band. and the dolled inc lie t:erm leel iuantum wige - -gr
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; i,,itag•c Along H tc oin irfv¢cc ianj ' +nce Aling iHicnrv erlafn ce u

'G -Band diagrams along the .-.-,- junction fir se eral doping con.
- i' ic, (,: c rtenl al sut"iace t ii r a dopng ccncentratuon o"t i the I .m :entrations ana lentths of the "-trpe stection The solid line represents the

ti t::c. c-.,.• endin g wich supports a quantum ,,i•re .t the p-,r-o -,onduction band. the dashed line the valence, and. and the dotled line the
-. ic~i. w nFermi evel

,.aiculation ,Ji he potential !andscape. Note the extreme disappears due to side depletion from the adjacent p-type
ictail close t.z the heterointerfaces This mesh contains regions. This is shown to occur for a iength of L = 7'50 A.
S500 nodal points. U

The resuiting potential sui ace for a doping concentra-
tion of I x 10'0 .m - is oisplaved in Fig. b. Note the strong

hand bending at the center which forms the wire and the VI. CONCLUSIONS
,,%cak potential vanation in the bulk GaAs region. A con- We hase demonstrated the existence of lateral p-n junc-
• our plot ot the same potential landscape is shown in Fig. tions on corrugated GaAsiA.GaAs interfaces. The n. and

"w,,vch shows a close-up ,-e,, of the center n-type region. D-type behavior is made possible by the amphoteric nature
Figure S shows the band diagram tor the p-n-p junction of Si dopants as a function of crystailographic plane onen-

:or viarious ierizths Jf the 1 100) i-tpe region (denoted L) tations. At V-grooves etched into a semi-insulating GaAs
and doping concentrations. The ongin of the horizontal substrate, a p-n junction forms at the intersection of (100)
;xis. wknich denotes distance, is chosen to be in the center and j 1 I) planes if the doping in the overlaver exce
"t the ?.-type r.zton. Note that a wire forms for a length of 5 x10" cm- We have also demonstrated the possibility
.000 A., since the conduction band approaches the Fermi of basing this system for the design of quantum wires I
Xvel. If the central ri-type region is shortened, the wires which may form at the bottom of the V groove. We find

that a quantum wire is to be expected in this p-n-p struc-
ture for a length of the n-type region on the order of 1000
A and a doping density of I × B)" U-
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We report the results of modeling lateral p-n junctions and p-n-p quantum wire structures at

corrugated GaAs/AlGaAs interfaces, using the surface onentation dependent amphotenc
nature of Si doping. We determine the potential landscape and the electron and hole charge
densities within a semiclassical Thomas-Fermi screening model, and then solve the

two-dimensional Schrodinger equation using finite elements for the quantized electron and hole
states at the heterointerfaces. We demonstrate the formation of a one-dimensional electron
system confined between two lateral p-n junctions, and discuss the advantages of this structure
compared to conventional electrostatic confinement schemes for fabricating quantum wires.

Recent studiec 4 have shown that Si acts as an am- interesting properties of such structures are the coexistence

photenc dopant depending on substrate onentation dunng of quasi-two-dimensional electron and hole states next to a
molecular beam epitaxial growth of GaAs and AIGaAs. In quasi-one-dimensional electron or hole system.
particular. growth on 1 100) surfaces invariably leads to Figure I shows a schematic drawing of the model cor-
n-type doping, while p-type behavior has been reported for rugated GaAs/AIGaAs interface. The composition and
Ga-terminated { Ill }A surfaces. These findings have led to layer thicknesses are similar to those used by Ebner et aL
the investigation of lateral p-n junctions at selectively in fabricating a lateral light emitting structure. A 50 nm
etched and epitaxially regrown V grooves consisting of thick layer of Si-doped Alo3GaE)7As is overgrown on a

{ 111 }AI facets on (100} surfaces. Miller 3 demonstrated the semi-insulating GaAs substrate with an etched V-groove.
feasibility of lateral GaAs p-n junctions which exhibited The substrate terminates in a (100) plane. whereas the
good diode current-voltage characteristics. By using Si- sidewalls of the V-groove are members of the { I I 1}A fam.
doped A1o 3Ga,) As rather than GaAs dunng epita.xial re- ily of planes. As indicated in Fig. I, n-type doping is
growth, one may also realize a lateral p-n junction between present for the (100) layers, and p-type doping for the
quasi-two-dimensional electron and hole systems at the ( I I) layers. 14 Also shown is the heterointerfuce between

corrugated GaAs/AIGaAs interface. Ebner et at.' demon- GaAs and AIGaAs. For suitable doping conditions, a two-
strated electroluminescence corresponding to the GaAs dimensional electron and hole gas (2DEG and 2DHG,
quantum well band gap in such a system, and Harbury respectively) forms along this interface.

at. reported calculations which confirmed the existence We use the finite element method and Newton-
of a lateral p-n lunction between two-dimensional electron Raphson iteration to solve the nonlinear Poisson equation

and hole gas systems for Si doping densities in excess of within a Thomas-Fermi screening model for room temper-
5x10' cm ature. We assume surface pinning at the A,3Ga0a 7As

The ability to fabricate lateral p-n junctions between (100) and ( I Il) facets (0.8 eV separation between the
high mobility two-dimensional hole and electron gases al- conduction band edge and the Fermi level), and n-type
lows for a variety of novel complementary device struc- background doping in the bulk of I x 10"5 cm- 3 - The de-

tures. In previous studies, V-grooves have been employed termination of the two-dimensional conduction and va-
for the design of quantum wires.' 0 By utilizing ampho- ience band edges is a challenging numerical problem which
tenc Si in such a V-groove structure, a novel quantum wire requires a highly nonuniform mesh because of the compli-

system may be realized at lateral p-n-p junctions." This cated geometry and the different doping densities. The re-
new way of fabricating a quantum wire with lateral p-n suiting large system of linear equations is solved utilizing

junctions" may offer some advantages compared to band width optimized sparse matrix methods. We also
presnt unipolar structures' 3 which use metal gate electro- study the quantum-confined electronic states at the hetero-
static confinement or sidewall etching. interfaces by obtaining solutions of the two-dimensional

In this letter, we report our results of modeling both Schrodinger equation for the calculated potenual land.
lateral p-n junctions and lateral p-n-p quantum wire struc- scape.
tures at corrugated GaAs/AIGaAs interfaces. We deter- We now concentrate on the portion of our model struc-
rine the potential landscape and the electron and hole ture which is shaded and labeled "p-n Junction" in the

charge densities by solving Poisson's equation within a schemaauc drawing of Fig. L. Depending upon the doping

se-mclassical Thomas-Fermi screening model. Given a cer- densities in the overgrown AlGaAs layer, the (100) and
tam potential profile, we then solve Schrudinger's equation , I Il ) heterointerfaces may induce two-dumeasonal elec-
bor the quantized states at the heterointerfaces. Among the iron and/or hole systems, respectively. A lateral p-n junc-
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lion will form if" the Si-doping density is high enough to Distance ... r. i

ýamultaneousiy produce two-dimensional electron and hole

systems along the heterointerfaces. Figure 2 shows, for sev- FIG. A. Band diagram for the lateral p-n )unction. Shown ,are the con-

erai values of the Si.-doping density in the overiaver, the duction and valence band~s (for two values of the doping• density) a=long

calculated condluction banld profiles at the n-side of the p-n ( he ( I 11I) and ( 100) interfaces. as indicated in the inset.

ju n c tio n in th e d irec t io n p e rp e n d ic u la r to th e ( 10 0 ) h e t- A t t e b smft e V g o v . a n r o 1 0
;.rointertace: the sem iclassical Ferm i level defines the zero At t e b s f t e V g o v ,a n r o 1 0 -type

:.4 energy and i s shown by the dashed line. The inset dis- region exists between two 1 ) #-type regions which re-

piays the conciuction band minimum at the GaAs side of sults in lateral p:otential confnnt.menE in addition to that ofl

(he heteroinierfac~e, and a qua-si-two-dimenmional electron the heterojunction. We have inve-stigated the formation of

gas forms for doping densities higher than 5 x 10": cm - ý a ID quantum wire in the n-region by solving Poisson's

Similar behavior is found for the valence barj&s in the di- and Schirodinger's equations in the solution domain shown

rection perpendicular to a ( I I I ) interface. Figure 3 dem- in Fig. I by the hatched area which is labeled . WIPx." m
o nstrates the existence of lateral, p-n junctions between Fis ure 4 gives the band diagram for the p-n-p junction,

' DEGs and 2DHGs for two values of the overlayer doping where the center n-type section is modeled with a length of

density. Plotted are the conduction and valence band edges /" = 100 nm an he overlayer doping is chosen to be I m

in a direction parallel to the ( I111 ) and (I100) heterointer- X< 1Os CM -3. "1 ,,e conduction and valence band edges are

faces. respectively, as schematically shown in the inset. shown at the G3aAs side of the junction and in a direction

Negtiv vaue of the distance correspond to the ( I1I1 ) parallel to the heterointer-faces. Note that an accumulation

interface. and positive values to the ( 100) interface. The of electrons occurs at the center of the n-type ( 100) sectioni

emergence of a p-n junction is clearly visible, and the tran- where the conduction band moves below the semiclas~sical

,ition from p- to n-type behavior occurs over a distance of Fermi level, which is again chosen to be the zero of energy m

about 100 am.m

'- ... .. . . .n
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Simlerbneh i n th indicatede i n un
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............ ..... :-region is defined by the etch time of the aLsotropic etch
-hrough an opticallv defined photoresist mask. Thus. elec-
:-ron or ton-beam iithography is not required to fabricate
!he wire structure. The bipolar nature of the structure may
be utilized to iniect minority camers into the wire struc-
-ure trom the p-regions. which may lead to some interest-

i •.' '.__-:ng device applications. Also. if one additionally provided
- !.1.)nm , eparate contacts to the 9- and n-type regions using nano-

.• ",• lithography, control of the wire transport properties could

be achieved both by varying the width of the confinement
. .- ...... - through reverse biasing the p-,i junctions), and throughS,• - i•.= I T e", . .. .

varying the electron Fermi energy via a gate contact on the
05 h -me AlGaAs above the electron channel.
1 :-• in summary, we have demonstrated the existence ofSIS o : ...J .'. :0 "' _' '0 lateral p -n ju nctio n s betw een 2 D E G s an d 2D H C~ s o n co r-

:i,,ame .. n 1rugated Ga.As/AIGaAs interfaces, which is made possible
by the anphotenc nature of Si-dopants as a function of

FIG. 5 Potential variation perpendicuiar to the heterointerface (at the crystallographic plane onentations. At V-grooves etched
-enter of the n-type region) for the two-dimenstonsi conduction band rms
i rounie shown in Fig. 4 The insets show the wave functions ior the lowest into a semi-insulating GaAs substrate, a p-n junction fo
'wo quantum wire state&s wnch are confinect at the GaAs side of the at the intersection of (100) and (Ill) planes if the doping
neterointerlace (the darker top portion of the mesh conesponds to the in the overlayer exceeds 5 x 107 cm-3 We have also dem-
nither-density AlGaAs overlaver I onstrated the possibility of basing this system for the de-

sign of quantu-n wires which may form at the bottom of

ind shown as the dashed line. The lateral p-n junctions on the V groove. We find that a quantum wire is to be ex-
both sides confine the accumulated electrons tn the direc- pected in this p-n-p structure for a length of the n-type
tnon parallel to the heterointerface. A better perspective of region on the order of 100 nm and a Si-doping density of

the two-dimensional potential variation can be gained by I X lo0l cmm-.
the insets which present front and side views of the two- The authors would like to acknowledge fruitful discus-
dimensional conduction band profile. Note the dip in the sions with J. Ebner, D. J. Kirner. C. S. Lent, 1. L. Me'z,
center which defines the "pocket" holding the electrons. M. Mueller, and T. K. Plant. This work has been partially

Figure 5 shows the vanation of the conduction band in supported by the Office of Naval Research and the Air
the direction perpendicular to the heterointerface at the Force Office of Scientific Research.
center of the n-type (100) region. The sharp dip below the
semiclassical Fermi level is now clearly visible. The corre- WJ M. BaWlingU and C T. C. Wood, Appl. Phys. leitt 41. 947 (1982).W 1. Wang. E. E. Mendel. T. S Kuan. and L. Esakiu, Appi. Phys. L.eti.
sponding solutions to the two-dimensional Schrodinger 47. 826 (1985)
i quation for the ground and first excited one-dimensional D. L. Miller, Appl. Phys. Lett. 47. 1309 (1985)I ubbands are shown by the insets in Fig. 5. The peak of the 'S. Subbianna. H. Kroemer. and J. L. Me.. J. Appl. Phys. 59. 488

v 1986).
enveloe function clearly lies in the GatAs side of the het- '. Ebner. J E. Lar,. G. W Ehason. and T K. Plant. lpveed•ved of'the
crojunction locah between the two p-type regions. (-The 20th European Solid State Device Research, Con/'rence. FSSDEAC 90.
darker top portion corresponds to the denser mesh in the edited by w Eccleston and P. 1. Rossner (Adam Hilger. Bristol 1990),
AlGaAs overlayer.) The confinement energies relative to pp. 401-404

the semiclassical Fermi energy are shown schematically on 'H. K. Itarbury. W Porod. and S. M. Goodnick. presessd at the 19th
International Conference on the Physics and Chemistry of Semiconduc-

the band diagram for the first three levels. The energies tor Interfac•. Death Valley, CA, January 1992.
shown all correspond to states originating from the lowest "B. 1. Miller. A. Shaar,. U. Koren, and P. J. Corvini, AppL. Phys. Lett.
two-dimensional subband energy of the heterojunction it- 54. 188 (1989).

sE. Kapon. D. M. Hwang, and R Bhat. Phys. Rev Lett. 63, 430 (1989);
self. The spacing of the levels, here on the order of 10 me, and E. Kapn. S. Simhony, R. Bhat, and D. M. Hwanng, Appl. Phys.
depends on the doping and the width of the n-region at the Lett- 55, 2715 (1989).
base of the V-groove. As 'he width is reduced, the subband 'E. Colas. S. Simhony. E. Kapon, R_ Bhat. D. M. Hwang. "ad P. S. D.
jeparation should increase, although lilmiratloni3 are im- Lin, Appi. Phys. L oett. 57. 914 f 1900)

posed by the lateral extent of the depletion region which H, K. pnvate cor n nuntcationl .

eventually results in complete depletion of the wire if made The use of p-n junctions for lateral continement of quantium wires was

too narrow. pioneered by C. C Dean and M. Pepper, J. Phys. C 1S, L1287 ( 1982).

The results above demonstrate the feasibility of realiz- and by A. B. Fowler, A Hartsiein. and R. A. Webb, Phys. Rev. Lett.I 48, 196 (1982).
tg a quantum wire structure on a corrugated Ga.As/" 'rVanitnuetnctr Phpvcg and fabncat1oA, M. A. Reed and W. P. Kirk,
AIGaAs surface. There are several possible advantages of 124s. 1Academic., San Diego. 1989).
such a structure compared to the current state of the art "The detauks of the amphotenc nature of the silicon doping near the
which relies on sidewall etching or electrostatic confine- tnternection of the ( 100) and (I 11) surfaces arc not known, and likely

to be more complicated than our model. This and Wmuabie comipensa-ment from Schottky contacts on the surface of the :on effects might ienu to reduce the abruptness of the Lateral p-n junc-

i AIGaAs. First, the actual definition of the width of the non.
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"Numerical modeling of a novel quantum wire structure rorned by the confinement of electrons
between lateral quasi-two-dimensional (Q2-D) p--n junctions in a corrugated GaAs/AlGaAs
heterostructure is reported on. Such a quantum wire may be realized at the tip of a Si-doped
AlGaAs overgrown V groove in a SI-GaAs suostrate due to the surface onentauon dependence
.)f Si doping. The two-dimensional conduction and valence band potential profiles for the
electron and hole charge densities are solved within a semiclassical Thomas-Ferru screening
model. The quantized electronic wire states at the heterointernace are then obtained by solving
the two-otnensional effective mass Schridinger equation using the calculated potentil profile.
The parametiwr space of the one-dimensional electron system is explored to establish which
'eatures cf the structure are dominant factors in controlling the electronic states. It is
jemonstrated that the energy level spacing of the quantum wire depends primarily on the laterai
-onfinement width in the n-type region at the tip of the k' groove. The ground state energy o" the
.,ire is snown to depend on both the laterai connnement width ana the vertical heterointertace
confinement width. The results of our initial caJculations are also reported on to ;ncorporate
lateral gates on the surface to obtain direct control of the quantum wire transport properties.
The advantages of fabricating quantum wires with this structure compzJre- to conventional
methods of electrostatic confinement are discussed.

I. INTRODUCTION hole gas systems (2DEG and 2DHG. respectively) with

Recent experiments have demonstrated that Si behaves Si-doping densities in excess of 5 x 101" cm - .

as a substrate onentation dependent arnphoteric dopant in A variety of novel complementary device structures

molecular beam epitaxial (MBE) grown GaAs and Al- may be based on lateral p-n junctions formed between high
GaAs. This effect was first studied on As-terminated ( I I } mobility 2DEG and 2DHG systems. In particular, exploit-
and 110} planes: -hen further studies were reported on ing the amphoteric dopant behavior of Si in a selectively
tja-terminated :' i }A. X.s-terminated { Ill }B, .100}, etched and epticaxfaly regrown V groove structure presents

"11 }_ and higher index planes.7'j These studies show that. i novel quantum wire system realized between lateral p-n
under suiwtble 'owth conditions, S*-ooped overlayers junctions. The depletion remons in 5uch a HEMT-
grown on ;100} GaAs substrate surfaces have donor be- compatible p-n-p-type geometry provide lateral confine-
havior, whereas Si-doped overlayers grown on Ga- ment of the carrers at the heterointerface of the n-type
terminated { I11 A GaAs substrate surfaces have acceptor center region, thereby realizing a quantum wire. The use of
behairior. p--n junctions for lateral confinement of quantum wires was

The controllable amphoteric nature of Si dopuig in- pioneered by Dean and Pepper5 and by Fowler and co-
cited the investigauon of fabricating lateral p-n junctions workers. 9 V-groove geometries have been previously ex-
in GaAs. Bulk Gas lateral p-n junctions with good diode plored for the design of quantum wires. -' This new de-
current-voltage chanmtentics were reported by Miler in sign, however, may offer some advantages compared to
1985.4 HEMT-:ompatible heterostructure lateral p-n junc-
tions, between quasi-two-dimensional electron and hole present urupolar structures. which use metal gate electro-

systems. were reported by Ebner et at in 1990.' In this staic confinement or sidewall etching.

latter study, Si-doped Al0) 3G&0 7As was epita~xialy regrown In this paper we report on numerical modeling of the

on a semi-insulating corrugated GaAs substrate. The selec- lateral p-n-p quantum wire system realized in a corrupted

tively etched and epit~aually regrown structure was fabn- GaAs/AIGaAs heterostnicture. In Sec. 1I we prest our

cated with exposed Ga-terminated {(I1I }A facets on the model of the system, and in Soc. III we discuss our solution

normally exposed {100} substrate. Ebner et aL reported methods for obuuning the two-dimensional electrtstatic
cleetrolumneiscence results that correspond to the GaAs potential for electrons and holes, and the electonmc states
quantum well band gap of such a system, and Harbury of the quantum wire. We also present the details of the
et a0 reported calculations that confirm the existence of a numerical method in the Appendix. Our results are pre-
lateral p--n Juncuon between two-dimensaonal electron and sented in Sec. IV. aad we conclude in Sec. V
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where N. = 2(2, kTm./h 2 )' is the effective ccr.ductton *
band density of states. n=(E4--E..(r))/k 9 T measures the

if CAs Subtraite separation between the Fermi level. EF, and the position-
dependent conduction band edge, E,(r), and F1/,(ii) is the 1
Fermi-Dirac integrai of order 1/2. A similar term is ob- I
tained for the hole density, p(r)=.V.F11 ,2(), where 77 is

FIG Schernitic diagram oi the model V-groove corrugated hetero- now the separauon between the vaJence band edge and the
-tructure aeomeirv Fhe n-tvpe or p-type nature of the amphoienc silicon Fermi level, and NV, is the effective valence band density of I

dopeo overlaver s labeled along with the corresponding crystaliographic
,uriacc onenauon. Possible formation of ZDEG's. 2DHG's. and a I DEG states.
.• aso noted. 7:e natcrei region represents the computation domain. We enforce bulk charge neutrality deep inside the

semi-insulating GaAs substrate, assumed to be slightly n
type with a background doping density of 1x.0× 10" cm-i

which is completely ionized. A density of surface states
1. MODEL SYSTEM along the { 1001 and ( II l} exposed facets is also assumed.',uch that the electrostatic potential is pinned to the near

Figure I shows a schematic diagram of the model cor- rrudgap value of 0.8 eV separation between the conduction

rugated GaAs/sAIGaAs heterojunction system. The chosen band edge and the Fermi level. The problem domain ex-

overiayer thickness and composition are similar to those of tends far enough from the p-n junction regions, such that I
a lateral light emutting structure fabricated by Ebner et al 5 the electrostatic potential becomes invanant parallel to the

A 50 nm thick layer of Si-doped AlO 3Ga, ,As is overgrown heterointerface.

on an etched V groove of a semi-insulating GaAs substrate. The confined states of the p-n-p quantum wire struc-

The sidewalls of the V-groove expose the { I l1 }A farruily of ture are also of interest. The bound state wave functions

planes of the normally { 100} terminated substrate. As in- are sought by solving the two-dimensional Schrodinger

dicated in Fig. 1. the amphotenc Si-doped overlayer exhib- equation for a computed potential profile.

its n-type behavior on the {100} surfaces and p-type be-

havior on :he <jI11A surfaces. The two-dimensional --- 7-2 i,(r)-.-[V(r)-ed(r)]b(r)=Eib(r). (3)
electron ana hole gas shown in Fig. I (labeled 2DEG and 2m.
'DHG, resoectivelv) 'orms along the heterointerface for Here. V~r) icludes external potentials and band offsets

.uitable doping conoitions. and d(r) is the electrostatic potential obtained from the
The hatcned region in Fig. I represents the finite ele- solution of Poisson's equation for the V-groove geometry. 3

ment calcuiation domain used to model the p-n-p quan- The decay of the wave function far from the potential
turn wire structures. The range of the ternary composition, "pocket" that forms the quantum wire provides the neces-
the doping density, and the structural dimensions are the sary boundary conditions to formulate Eq. (3) as an
parameters that define the system. A two-dimensional cigenvalue/vector problem. The wave funcuons of interest. ,
equilibrium potential profile of the model geometry is however, are the lowest energy quantum wire states. The
sought for different material parameters. The band bending problem, therefore, can be reduced to a subspace of the full U
due to the electrostatic potential. 6(r), is obtained from the eigensystem.
solution of Poisson's equation within a semiclassical
Thomras-Fermi screening model,

SI+. NUMERICAL METHODS I
Vib( r) =- {n( r) --p( r) +,V'; -N;•). ' I)

D,. The solution of the two-dimensional Poisson and

Scbrdd;nger equations is a chailenging numerical problem
Complete ionizauon of the impurities is assumed at room that requires domains of highly nonunform mesh design,
temperature. such that the background doping of the serm- bandwidth optumizalton, and sparse matrix methods. The
ir,31ilating GaAs. assumed to be lightly n type, contnbutes general considerauona of the solution method are discussed
to Ný in the substrate, and the amphotenic Si doping con. n Sec. III A. whereas the detals of the iumaical method

tributes to both Ni and NV in the overlayer region. The are deferred to the Appendix. The intererttng and often
electron density, ntr). Ls given by the Fermi-Dirac integpal ignored sub)ect of nonuniform mesh generaton is dis-
of order ;, cussed in Sec. III B.I~~ ~ -I
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FIG " Conver2ence ot the PoInoMn %OlutiOti Newton-Raphson iteration leraionNUmber

ýcneme ltr sevcral different p-v-p gometnus.
FIG. S. Convergence of the Schrodinger solution subspace iteration
scheme for several different p-i-p geometries-

A. The solution of Poisson and Schrodinger equations

The two-aimensional Poisson and Schrodineer euua- 1" iterations with a typical cumulative solution time of 430
,:ons are coin solved with the finite element metmod. The sec on an IBM RISC Svstcem/0bO.
Poisson couation is solved for the liscretization romain For the Schrodinger equation. the asymptotic decay of
scnematcally shown by the hatched regon in Fig. I. the wave function can be modeled by either zero-valued
whereas the Schrodinger equation is only solved for the Neumann boundary conditions or zero-valued Dirichlet

small subregion near the V-grocve tip, where the electro- boundary conditions. Continuity of the wave function
static potential "pocket" defines the quantum wire. across the heterointerface is implemented with the penalty

For the Poisson solution, the bulk charge neutrality element method and provides compatibility with the Pois-
boundary conditions deep inside the GaAs substrate are son solver. The details of the finite element formulation of
implemented by fixing the electrostatic potential at a few the Schrodinger equation are deferred to Appendix B.

points on the boundary to the value consistent with the Because only the lowest few eigenstates are sought, the
background doping, and by applying zero-valued Neu- discretized Schrodinger equation is solved by a subspace
mann conditions on the remainder of the bulk boundary. iteration method. Efficient skyline storage and sparse ma-
T'his condition forces the boundary normal electric field to trix methods are used to obtain the lowest ten bound states.
zero. and forces the potential to the proper equilibnum The iterative error of the subspace algonthm is plotted in

1uik vaiue. Surface pinning on the exposed facets is impie- Fig. 3 for the ground state of the lateral p-n-p quantum
mented by Dinchlet conditions, which force the conduc- wire for the same selection or n-region V-groove tip widths.

tion band potential to the approximate midgap value of 0 8 as were chosen tor Fis. 2. After initial oscillation, the error
eV above the Fermi level. Zero-valued Neumann boundary exponentially decreases at approximately one decade every

conditions are apphed along the side boundaries to model 15 iterations. For the finite element Schrodinger domain

the asymptotic invanance parallel to the heterointerface. consisting of 3482 elements and 1876 bandwidth-optimized
The discontinuity in the electrostatic potential at the het- nodes, a solution of a 20 eigenstate subspace over 120 it-
erointerface is treated as a linear constraint on the system erations typically consumes 240 cpu seconds on an IBM
of equations and is implemented with the penalty element RISC System/6000.
method. The nonlinear Poisson equation is linearized by

the Newton-Raphson iterative method. The details of the S. Nonunio mash generation
finite element formulation and linearization are deferred to

Appendix A. Two-dimensional numerical modeling of realstic

The resulting system of linear equations is solved by structures. such as those considered in this work. requires
"standard L/U decomposition. backward substitution, and the development of sophisticated mesh domatns Bulk
forward elimination. Bandwidth optimization of the dis- charge neutrality boundary conditions imply that the do-
cretized equation numbers in conjunction with the skyline main. fl. must extend microns into the bulk region. At the
storage technique provide an efficient solution of the linear heterointerface and in the p-n junction depleion regions.

system. The iterative error of the Newton-Raphson solu- however, the potential profile may undergo large variations
tion is plotted in Fig. 2 for typical runs of the lateral p-n-p in nanometer distances. The dispanty between character-
quantum wire doman for various widths of the n-type istic length scales and the need to keep the problem size
region at the V-groove tip. The finite element domain con- computaonaflly tractable constrains the diwrcrtization

sists of 16 168 elements and 8427 bandwidth-optimized scheme to highly nonuniform mesh designs. A further con-
nodes. The error drops by approximately 9 decades within straunt on mesb design is the need to presee the charac.
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tenstic geometry of the structure. The 54.77 angle between FIG. 5. Band diagram for the laterll o-n-p quantum wire structure.

the .'100} and { I 1} crystallographic planes. for example, Shown are the conduction and valence bancds aJong the hetaromntetfacs

must be maintained throughout the domain, for a 100 rim long center n-type section and a Si-doping dateuty of 1.0

With a rectangular master element desiin, it would be < io" cm - . The insets show front and side view% o( the two-ditensaaial
ict mn ro conducalon band prolie. The potential "Doci:et" that holds the quantumdifficult to mamntiun arbitrary, angles throuitnout the do- wr sas~mto

main, and the resulting system of equations would likely be
•itractablv large. With the tnanguiar master element, how-

-ver. it is easy to maintain arbitrary geometmc angles in nect the subdomams together. The special penalty elements
nonuniform mesh designs. Furthermore. standard band- can then be added along the heterointerfaces to force the
width optimization algorithms exist for tmangular element potential discontinuity. We have found that a computa-
domains to efficiently number the nodes for sparse matnx tionally efficient tnm-,-Lular element mesh can be generated

methods. for any two-dimen. ... l device geometry with a minimum
At present there are few mesh layout tools available to of effort.

the scientific community suitable for device modeling ap-
plications. Xmgredit,1 6 however, is a powerful mesh gen- IV. LATERAL V-GROOVE QUANTUM WIRE
eration tool that was orginally designed for oceanographic STRUCTURE

land-margin studies, which is general enough for device I
modeling work. Xmgredit is a window based interactive The results presented in this section concentrate on the
mesh editing tool that allows arbitrary tmangulation of a p-n-p V-groove structure indicated by the hatched model
domain and provides all the necessary functions for grid domain labeled "wire" in the schematic diagram shown in fl
refinement. Fig. 1. Interesting behavior is expected when back-to-back W

Figuze 4 shows the mesh generated to solve the Schro- lateral quasi-2-D D-,, functions are formed with a common
dineer equation for the lateral p-n-p quantum wire struc- n-type region. In particular, if the n-type region is made
ture This mesh is a small subdomain of the larger mesh narrow, one would expect the 2DEG formed at the hetero- 1
used to solve the Poisson equation. since the bound state interface to be laterally "'squeezed" into a IDEG by the
wave functions are nonzero only near the potential depletion regions of the p-n junctions on both sides. A
"pocket" at the V-groove tip. We present only the smaller conduction band "pocket" is expected to form at the tip of
Schrodinger mesh in Fig. 4 because its ratio of largest to the V groove, which many support two-dimemonadly con-
srmaUest element is small enough that all the elements can fined quantum wire states.
be clearly seen. Figure 5 is a plot of the band diagram for a lateral

As mentioned above, the Poisson mesh consists of p-n-p junction with an overlayer Si-dopant concentration
16 168 elements and 8427 nodes, and the Schrrdinger sub- of 1.0x 101icm- 3 and with a narrow 100 nm n-type regon
domain consists of 3482 elements and 1876 nodes. For the at the V-groove tip. The electrostatic potential is plotted

larger Poisson mesh, the maximum element area is 3.7 parallel to the heteromnterface on the GaA.s substrate side,
e 105 A: and the minimum element area is 70 A,2, while along the {! ll)}-100}-{111} surfaces. The formation of

marunurung the proper crystallographic orientations an electron gas is expected in the region where the conduc-

throughout the domain. The sidewalls of the V groove tion band approaches and traverses the selinkacal Fermi
extend approximately 800 nm for the Poisson mesh and energy, indicated by the dashed line, which is choien as the
approximately 60 nm in the Schrodinger mesh. as shown in zero of energy. The quantum wire potential "pocket" is
Fig. 4. more clearly visible in the insets to Fig. 5, whaee portions

In designing such a large nonuniform mesh. it is easiest of the front and side views of the two-dimensional conuc-
to generate a separate mesh for each region of the hetero- tion band profile are shown. Only a smal submesh of the

'5tructure with different materiali properties and then con- fuHl two-dimensional computaion doman is shown in the

1512 . AM Phys., Voi. 73. No. 3. 1 Febru 1ry I...
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FIG 6 Conduction band prohies for the p-n,-p quantum wire sru'ctute. FIG. 7. Conducuon band proiem for the p-- qumaulm we smu're.
";hewn are the conouction oa~nos along the I 11ii) and (100) heecrointer- Shown aure the conduction bands a lOsig the ( I I I ) and (100) bciaoter- _
:aces •ulh a nato I5O0nmwidth n-type seczonm for hvedulfferentaoverlayer faca. with a hixed 1 Ox 10'l cm - doedph Ai• ~ ,G,,Aao'e'riayefor eight

Jionant concenir :ons. differen widths of the exposed (100) surface.

.nset ne~ures ror eetter celineation of the potential well. or a very. wide n region, the behavior of the s.ystem will
.ithou•,n the caicuiatuons are performed on the full domain approach that of isolated p-n .junctions and the quasi-
to ensure that bulk charage neutrality conditions are sats- IDEG becomes a quasi-2DEG in the n region. The
fled deep in the GaAs substrate. The lateral p-n--p junc- V-groove tip width, therefore, controls the transiton of the

*tlofs that form at the heteroimterface are clearly visible in n region from a [DEG quantum wire system to a 2DEG
mthe left inset of Fig. 5 (front view), whereas the heteroin- lateral p-an-p system.

terrace and "pocket" are more clearly seen in the right Figures 6 and 7 demonstrate how control of the lateral :
inset (side viewi, quantum well electrostatc potential can be obtaned

Shown in Fig. 6 is a comparison of the lateral conduc- through adjusting both the overlayer Si-dopmnt concentr-
tion band profile for several different overlayer Si-dopa~nt tbon and the lateral V-groove dimensions. It is also of in-
concentrations wuth constant 150 nm width n-type regions. terest to study the dependence of the vertial heterointer-
A\gain. the semiclassical Fermi energy is chosen as the zero face confinement for the same parameters. Plotted in Fig. 8 :
of energy and is indicated by the dashed line. As is ex- are the conduction band profiles in a direction perpendic- .
pecred. the p.-n-p depiction widths are reduced and the ular to the heterointerface, at the center of a 150 nm wide
quantum weil depth in the n region increases with higher n region, for the same dopant conditions used in Fig. 6. As
,weraver oo~ant concexutriuon. For the case of a 150 nm before. the zero of energy is chosen to be the semiclassical
vi~e V-groove tto anot overlayer dopant concentration of Fermi energy and is indicated by the dashed line. Increas-
l0x 10 1d cm - . latbano conditions are approached at the ing negative values of distance correspond to increasing
center of the n region as shown by the solid cturve in Fig. de.pth into the GaAs substrate, whereas increasing positive
6. This tiatband conditon occurs when the two lateral de-
pletion regions do not overlap and therefore there is no--
'aterai field component in the center (n-type) region of the 0. ______________________

V-groove tio.0.0i -- "/t IOl'c '

The elfect of the width of the n-type V-groove tip on • -. • .,o7•,• I.

the lateral conducaon band profile is shown in Fig. 7 for a 0o ,.... •. s.o~io",c. , Im '
constant Si overlayer dopanit concentration of l.OX l0ll oso~ i I iiNs. 7Si o~toc

cm - 'The setmclassia Fermi energy is again indicated by o~o !N.I• '
the dashed tine at 0.0 eV. Larger V-groove tip widthal cor- • o.•o - ':

Quantuma well. Flatband conditions are demonstrated in
Fig. " for n-region widths greater than 15O rnm. As in Fig. 010

411

6. iaterai flatband conditions occur at the bottom of the o0.
quantum well "pocket" when the two lateral p-.n depletion -. 10o ---
regions do not overlap. Once fiutband conditions are estab- .o.,• L- -"________-___

fished in the bottom of the well, the maximum depth of the • 50 .ss-0o 4s - 0 1o- m.o- . ,o s .
"'pocket' becomes indeedenat of the V-groove tip width. FG .PtoivrainpW'di~~t h etoifc a h

However, the electronic states in the well are expected to z• of. R. • nm width n-qtpe reo) for five dafaust overtayer

be a strong runctioc of the lateral well width. In the limit d• tntiom

J11 7
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FIG. Potentui variation perpendicular to the heterointernace ( at tnc FIG. 10 Potential vanation perpendicular to the heterotiterface (at the 3
,enter ci the n-.vpe repon) with a nixed 1.Ox10" m Si-dopea center ola 100 nm wide h-type region) for the two.dimenaaonalconduoc-

G-I &GL.A3 overlayer for eight different widths of the n-type region. tion band profile shown in Fig. 5. The insets show the wave funcum for
the lowest two quantum wire states. that are confined at the GaAa aWe o(
the heterointerfafe (the darker top portion of the mesh corresponds to the
.AI~a.s overlayer).

valucs of atstance correspond to locations in the

.ki 1Gan -As overlayer approaching the surface. For clar.
.IV, tne results are only plotted up to a depth of 600 nm energy quantum states sougnt for the system with a 100 nm
:nto tne GaAs substraMe, although the caiculation domain r-region width and 1.0 " 10' cm - )verlayer dopant con-
extenos for several microns to ensure that bulk charge neu- centration. The conduction band potential is plotted for 3

trality conditions are satisfied. Figure 8 shows that hetero- slice through the center of the n-type region in a direction
interlace confinement is only achieved for overlayer iopant perpendicular to the { l00} surface. The lowest e.genen-

2oncentrations above a cntical value of approximately 5.0 ergy, labeled by E, in Fig. 10. is at II meV referenced to
x 10'7 cm - The conduction band potential on the GaAs the semiclassical Fermi energy, which is denoted by the *
side at the heterointerface has a strong dependence on the dashed line at 0.0 eV. The subsequent excited stat eachub
overlayer doping for concentrations below the critical have a separation of about 12 meV associated with .ae
value, marking the onset of the electron gas formation, and contribution of the lateral confinement. The left and right
a much weaker dependence for concentrations above this insets in Fie. 10 show the full two-dimensional results for
critical value. The conduction band potential in Fig. 8 first the ground state and first excited state, respectively. 7.e
increases from its bulk value for points approaching the Al0 3Gal 7As overlayer appears as the region of higher
heterointerface. and then it sharply decreases to form the mesh density near the top of the inset figures and delineates
heterointerface confinement "notch." This "hump" in the the heterointerface. The wave functions are concentrated U
GaAs conduction band is more pronounced for higher in the deep "pocket" on the higher mobility semi-
.werlayer dopant concentrations. insulating GaAs substrate side of the heterointerface.

In a similar fashion to Fig. 8, Fig. 9 shows the corre- It is clear from the insets of Fig. 10 that the first ex- I
sponding conduction band profiles for the same selection of cited state corresponds to the first excited mode of the
center n-region widths used in Fig. 7 with a constant over- lateral confinement potential induced by the p-n junctions.
layer dopant concentration of 1.0X 10a cm-3 The most The quantized level spacing for the lower eigenstates is
noticeable feature is the pronounced "hump" in the GaAs therefore controlled by the nature of the lateral confine-
conduction band at narrower n-region widths. For the nar- ment. The nearly equal level spacing of the lowest states is
rowest, L = 50 am case denoted by the dash-dotted line in due to the parabolic-like shape of the lateral potential pro-
Fig. 9, a sharp beterointerface confinement notch is formed file of the 100 nm width n-region structure, as can be seen
with a wide "hump" barrier that extends several hundred in Fig. 7. The higher-energy states, however, also include
nanometers into the GaAs. In this case, the barrier in the excited modes of the confinement perpendicular to the bet-
GaAs should prevent the leaking of any one-ditmensional erointerface. This is particularly true for narrow n-region U
quantum wire states into the bulk substrate. As the V-grove structures in which the magnitude of both con-
n-region width is increased, the GaAs barrier decreases finement dimemnons are of similar order. The large sepa.-
unti, in the lirmt, the conduction band profile approaches ration of the lowest state above the conduction band min -
that of the far n side of an isolated p-n junction. ima at the heterointerface. labeled by the dot in Fig. 10. is

It is of interest to venfy that the quantum wire struc- attributed to both the lateral confinement energy and the
ture supports two-dimensionally confined electrauc states. confinement energy perpendicular to the heterouiterface.
To tho end, the calculated conduction band profile in a The detais of the amphotenc nature of the silicon dop-
region enciosuin the potential "pocket" is used as the elec- ing near the interseion of the (100) and (Ill) surfaces

.rostatic potential in the Schrc'dinger Hamitonman. as a- are not known, and are likely to be more complicated than 3
cussed in Sec. III A. Presented in Fig. 10 are the lowest our model. This and pomble comenpsanoc effects might

1& 4..A - i ii I I..



.. ,o• nh~ ,hanzing tne overiaver Si-dopant concentration for a fixed

,- . .2 :o : ) nm wiath V-eroove tip. The too axis corresponds to

• q f.MdetenaentlV cnanging the lateral wioth ot the V-groove
L .1'00 h tip for a nxea overiayer dopant concentration of LOX 10'

- cm " 7he energies on the ordinate are plotted relative to

_.- -_ _ .he minimum of the conduction band pronle at the hetero-
. •.-, . nitertace. :.e.. reiative to the bottom of the potential well.

- " _-. denotea by E"Ot¢n The ground state energy is lowered by
-9 - - _- _ in.-_'-__. ,ndepenoently wiJening the n region and saturates at the

,-- --- ... limttin2 value given by the heterouitertace confinement. In

.- approaching the wide n-region limit, the one-dimenstonal
-- ,electron gas evolves into a two-dimensional electron gas,

106 1.5,0,rimwhich is manifest by the pronounced decrease in the levelO°Io - W. IN.c spacing in Fig. II. The change in behavior for narrow
s,- t~o••cma,, mi•,10"on ' widths. i.e.. below 75 nm, seen in Fig. 11. occurs when the

magnitude of the lateral junction confinement is compara-
FIG. it. Vanauou of the lowest three quantum wirestates uith oveljayer ble to that of the heterointerface confinement- Iridepem-
dopant concentration and n-repon wdth. The energes arn referenced to dently increasing the overlayer dopant concentration has
the conduction band minimum at the heterointerface (i.e.. the bottom of several effects on the potential well, the confining well in
the "Docket") - The nepuve sloping curves correspond to independently
,hanging the width of the n-type region for a nxed I Ox 10t" cm - over. the direction perndicular to the heterointerface becomes
:.ver aoping. The oomuve slooina curves correspond to inaependently "deeper' and "thinner." whereas the lateral Junction con-
. naneing the overtaver doting tot a nxed I 0 nm wide n-type region. -inement becomes wider and more a3oruD. with smaller

side depeition regions. Figure II shows that the net effect
of increased doping is to increase the ground state energy,

tend to reduce the abruptness of the lateral p-n junction, relative to the bottom of the quantum well. with only a
which also would tend to reduce the energy level spacngs. slight decrease in the energy level spacings. Simultaneously

The dependence of the eigenstates on both the over- plotted in Fig. 12 are the energy level separations for the
layer doping and the n-region width is presented in Figs. II same parameters given in Fig. 11. The bottom and top axis
and 12. Simultaneously shown in Fig. 11 are the ,-1--pen represent the effect of independently changing the over-
dence of the lowest three nound state energies on the lat- layer doping and independently changing the n-type region
eral n-region width and the oveimayer Si-doping concentra- width. respectively. The nearly equal separauon of the sec-
tion. The bottom axis corresponds to independently ond mode from the first and the third mode from the sec-

ond is due to the parabolic shape of the lateral junction
confinement. When the lateral n-region width is increased.
the pronounced drop in the level spacing is observed.""! .!05 W )d2h tz5mi whereas only a slight drop is observed for increased over-

-50 c . .. ... layer doping. The n-region width is therefore the dominant

L controlling pakrameter of the quantum wire energy levet
* -E2-EI I spacinig.

E -M Control of the optical and transport properties of the
- active wire regLon is of primary interest for eventual device

15 r applicauons of this corrupted GaAs/ AIGaAs heterojunc-
2 L3 tion system. The previous results indicate that independent

S i1 • control of the quantum confnefment dimensions may be
m X 10 1' obtained by the fabrication of gates on the corrugated sur-
•,.. .....- ~-.. u .•7 face. In this section we also present the method and results

S"......--------- - for our initial atempt to model the electrostatic potentia
- profile with the addition of Schottky gates.
4--- A simple gate geometry is chosen such that each wall

of the V groove has a Schottky gate. The gates on the

50 '5 t0.0 p-tYpe { I I l } sidewalls stop 100 nm from the n-type {f 0}
S,-Ca Cs =n •i0M m,) Y-groove tip. The center gate, along the { 100}, extends

FIG. I. v ariation of the quantum wire nat epatioms wuith overlayer over the full n-region width. In these calculations, the same

dopant conceitrtnuoe and n-region width. Pie sahariy dope cr-ves ow. bias will be applied to the sidewall gates a-rd the center gate
respond to lndepandtcaly chaint m the width olf the n-type regpn for a will be referenced to ground.

zed 1 .0x IO" Om c oirUayer doping. The ighth doped c cor The Thomam-Fermis screening model for the electron
spond to indepaidmty chag•wn the overlaye do•ang for a UMl 1.50ru and hole cocentruations, described in Sec. II. tactly a-
wi 'l.tYyD rexL The sand and daahed tia Ame the sedabottil ba
" hc second and firsm uaa and t•wenm the tdird and sacmd at. re- sumes an equlltim carrier distribution. T'his model is

* pectivy. valid for small pertubazuon from equLlibnum. such that
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[D)a• inin FIG. 14 Lateral conduction band profles for the same sutctuire and bm-

condiuons, as shown in Fig. 13. Shown are the cond•ctma s=wa a the

FIG. 13. Potenttia vanation perpendIcuia to the heteroinerface (at the heterointerface parallel to the surface along the ( 100) and ( I I) ploae

,:enter of a 100 nm wide n-type region. and I 0x 10"6 cm - ý Si overiayer
Jooingi for several different bias potential. applied to Schottkv gates on

he V.groove sidewaiu.t feature that should further confine the electronic states to
the heterointerface.

The lateral o.-.n-p conduction band profile is shown in

no appreciable hole concentration exists at the surface. Fig. 14 for the same structure and sidegate bias conditions.

However, under the bias conditions necessary to obtain Positions paraldel to the heterointerface are referenced to

,:ontrol of the quantum wire, this charge model must be the center of the n region, and the quasi-Fermi level for

modified to extend its range of validity. To this end wc electrons is denoted by the dashed line at 0.0 eV: Increas-

assume two constant quasi-Fermi levels: one for electrons ing sidegate bias narrows the lateral :onfinment dimen-

referenced to the Fermi level in the bulk GaAs substrate, sion. which was previously shown to control the quantum

and one for holes referenced to the Fermi level of the side- wire level spacing.
wil metal gates. 17 The electron and hole concentrations These initial results show that control of the electronic

are therefore calculated most accurately in the regions, properties of the structure may be obtained by the addition

where they are the majority carrer, and least accurately in of lithographically defined gates on the surface. It is intu- *"h in itively clear that better control of the lateral confinementthe m in o rity carre er reg ions, w here their contributio n to n t ca be ch v d wi h o l t e s d g t s m d no e -the total charge density is least significant. width can be achieved with only the sidegates and no cen-
The boundac r conditions on the corrugated AIG..s ter electrode. It is difficult, however, to formulate well-

The ounaryconitins n te crruate Ala~s posed boundary conditions along the exposed surface with-surface are modified to include the gate bias. The boundary
neneath the gates is modeled by Dirichlet conditions that out a center reference electrode. The nature of the Poisson

specify the potential as the sum of the equilibrium surface equation requires Dinchlet. Neumann. or mixed boundary
conditions along the exposed surface. none ot which arepinned value plus the bias potential. Since the center gate is imewithout omplte ad sumpeions It ic alo

referenced to ground. the boundary along the n-type region simple without completely ad hoc assumpuons. It is also of
remains pinned at the approximate midgap potenti of 0.8 interest to form Ohmic contacts to the two-dimensionalremains abovedat the bulkqasi-F mi .te 0 potential eofe 0 carriers in the structure, which should provide control ofeV above the bulk quasi-Fermi level. The 100) nm exposed the transport properties through reverse-biased "- junc-
surfaces between the gates is modeled by a linear drop in thtnsp propties through e re ereseia g p-njunc- U
the potential along the surface from the sidewall gates to tion mic cacts also ide the i ntet pu -
the center electrode. This somewhat ad hoc assumption is ity of minonty carrier injection into the quantum wire,
justified because the overlayer is depleted of mobile caim which may give rise to new device appmicauol snc thOs is
em, as seen in the previous results an inherently bipolar structure. The model of an Ohmic

The vertical conduction band profile through the cen- contact, however, must include direct control of the two-
ter of the n region is plotted in Fig. 13 for five different dingtensional carers, which implies additional consabntste
side-gate biases. The overlayer Si dopant concentration is amone the heterosterface. We are worting on a betterlx 1. 0× ~z cm- • n the n-region width is 10 n As be- model for an e~xposed surface, containng occupiedi surface

I.O 10 1 c -) nd he -reion wid h i 10 nm Asbe. trap states under zero curren t bias conditions, and the de- m
fore, increasing negative values of distance correspond to velopment of wel-posed s sectrostatec bou conditions.
positions deeper in the bulk GaAs substrate referenced to
the heterointerdfae. The quasi-Fermi level for electrons is V.SUMMARY
specified by the bulk GaAs Fermi level and is denoted by
the dashed line at 0.0 eV. Figure 13 demonstrates that, Wehave reported on our method for modelig a novel
with this gate geomeary, increasing bias reduces the con- p-n-p quantum wire structure formed in a corrugated
finement width of the notch and only slightly depletes the GaAs/AIGaAs heterostructure. We soAve the two-
electron gas. The itncease of the "hump" in the GaAs is a dimemonal Poisson equaon. within a semiclasuical



.'Oma.s-rermi screeninu model. for the conOuction ma
.alence rana :ronles. -he quantum connnea L:ectronic .1...
.tates are suosenucntly obtained bv soivin2 :ne two- _ ' r--..
dimensional Schrodinger equation using the :'reviousiv
-ornmutea electrostatic potential. -.- ' A M

',Ve nave cemonstrated that it is feasible to realize a
ioitar Quantum wire structure on a HEMT-compatible 71..
:orruzated GaAs/AIGaAs interface by exploitin2 the sur-
""ace orientation dependent amphotenc nature of Si doping. r
"These results inaicate that the quantum wire levei separa- -- -------------------

uions are controlled by the lateral confinement width, and
the parabolc.like shape of the lateral confinement poten- FIG. 15 Schanauc dagram of the caikatJm oms. Da did -
tial gives rise to nearly equal level spacings. It was aiso felent material compfmi. n am indicated by dfferehm tdm o•( V ey ,,

shown that the ground-state energy of the wire states can plnabeled The bulsdugratby boitn s ad, ewtdnbuy t, the

be controlled by the vertical confinement width. Initial re- r, The boundanai, between adiawt material 11, and f1•is dmodby
suits demonstrate that the electronic properties of the F, In the quantum wtre structure. the AIG.As.GiM bamt ufam

structure may tie controlled by the addition of gates on the x um a1011 rl.2, r,., am r, 4.

corrugated surface. This structure has several possible ad-
Svantages compared to sidewall etched or Schottky contact as zero-valued Neumann boundary conditions. We have3 eiectrostaticallv confined systems. ' The definition of the found that specf'ying essental boundary couditions at a

!,-remon width is controlled by the antsotropic etch time few points and zero-valued Neumann conditions on the
tnrouan an ooticailv defined photoresist maski ion-nteam or remainder of the bulk boundary work best, since it pro-
:lectron-beam iithography is not required to tabn,:ate the vides a quick visual check of the solution for proper con-
,tructure. This inherently bipolar heterostructure might be vergence. The boundaries of each subregion are dewoted by
used to inject minority careers into the quantum wire from r,,. The portion of 1",, in common with another subdo-
the p regions. possibly leading to new device applications. main, r,, is denoted by r,... All the heterointerfa•c in f1
If the p-type and n-type regions are separately contacted, will therefore occur along the r.,,. boundaries. The powen-
by further nanoiithography, the lateral confinement width tial on the r, side of a heteroint-erface formed between
rnight be controlled by reverse biasing the p--n junctions regions fl,. and fl, is labeled Ur.., and lkwise labeled
and the electron Fermi energy might be controlled via a ur,.. on the opposite side. We will also define u=(E,(xy)
gate contact on the AIGaAs. -EF)/kBT as the conduction band edge energy relative to

the Fermi energy in units of eV/keT. We now specify the
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APPENDIX A: FORMULATION OF THE POISSON
PROBLEM u, on F, Er

1. Problm statnvnt uo= ,on C,, E F1; (A3)
Ur. -u...on lr,,,a, m'n.

The model structure is partitioned into regions. f1",

•- ..... fly, as shown in Fig. 15, defined by different mate- and
nal parameters. such as Al mole fraction and Si-doping Vu,.ti,=O, F,,E• •, (A4)
,.oncentration. We want to solve the two-dimensional Pois-
son equation on the whole domain flmflUfl,'"•l, where p(xy)---e[n(r)-p(r) -N--NV)] is the total
The total boundary of domain il will be denoted by F and charge denmty used in Eq. ( I ) of Sec. I of the tmain text,
is partitioned into three terms: Fs for that part of r that is il,, is the value of the potential set by the background
on the surface of the structurem i.e., the bounda:ry on which doping and the reqtuirement of space charge neut-ality, 4,
the Fermi level is surface pinned. t for that part of r on =0.8 eVlkgT is the near midgpp surface pinned potental.
which bulk charge neutrality conditionrs apply, and last r., and Au,,.. = ur.- -- ur.. is the conducuon band discontn-
for the remainder of r on which the normal electric field is nwty at the heteromterfice formed betweem regi fl,,,
forcea to zero. Bulk charge neutrality can also be specified and f(,, and ,i, is the unit surface normaL The charge

IA



:ensitv tem on the nzht-hancl sicae ot the Poisson eouauion -he potential can be likewise approxitedt by the expaii- I d

.,.'u be aenotect bv . ;_, ..,o s raven by the Fermi- .,on t;uI r) ... u, (.r) =B(r)-u. where B(r) is the
Dlirac integral of .•raer i . *Fr-e nonhinear nature ot the " .M matrix or the gradients of the M globl:• shape func- •
Poisson euuauion w~ill be aiscussedl later, tions. l"•e same approximations are made for the po wt-uia I

We wil use the method ot vanacions tot'ormuiate the ..arations. •'utr) =0u 4 .N' and V6u_-ur-B'r. Using

• umencai Droolem. We first identifv a total energy iunc- these expansions, the vaniatonal st~atemient of tt~e Poisson I ---

{iOl.•l ;as equation can be wnitten a~s I
[1 '-u..,- dfL.; 6[H=O= '~6,( Br(r)B(r)dfll u,,

- n"•~il'-• a-• f)Nr(r).f(u..•)dfl.•,)
- a ' - •u• -•': }6.-~

- .(Ur. -Ur -Au,,,,. (5.-I 2 t\Wi.U

We have used:ithe prnaaty method to incorpo~rate the linear -,,.,X Ia 6Ur.m) -- I ]\'r...)

ccnstramnt boundary, conditions, where a is a large penalty,, ,I

etototeLranemlilrmehdsneidosfli .factor that will be discussed later. We preeer the penalty 1 I
not increase the aimensionalitty of the resulting lhnear sys- .- -\~)t •~~YA 7
:er. Wre now revoke the principle of stationarity of l'[ with "•"

respect to the state variable ui by evaluating •il=0. [n the We now aefine e,& as a M×x 1 vector contaunmg a 1 in eachI

,calculus of variatons, this is the m~nmmtzataon of the en-. oiincrepnigt •,,adzr ls~~e eas
ergy functional. We denote ar'dietary vaniations in the state pdefine threspondMngloa mtoi K ,. and teoelehere Me also.
variable, which satify the essential boundary conditions by dfn hM> lblmti ',,,adte lgo
6. From the minimiauun we obtain hal vector P'r,. as follows:

"I - . K'r .= r.,,(A )

Ur ... ( I )'K '{U (A8b)

S-,We now define the following M' × M matrix. K,•,. M x 1

"• " vector f..,(u.,), and M× I vector P., as -

T'he state •anable. u., :s subject to the boundary condi- I=InBr(r)B(r)dfl.; -.-ae~ ,e•

tions specified by Eqs. (A3) and (A4) above. The third
term on the right-hand side is the penalty method imple- -- , K'r,. tag) I
mentation of the bulk charge neutrality conditions. These -

nchlet conditions with a corresponding reduction of the f,,~u, " rrf1,'f,,,A0
'umb~er of unknowns. The solution to Eq. (A5) above is - ""
unique and eqw~valent to the solution of the ongmnai prob-
lem. P,=,aet,' ,+a • P'., All) I

The linear cor.smuant boundary conditions are incorpo
2. Finite element frutinrated into the stifness matnix. K,, by the penalty method. • i

The dorain, f, is nonunifo,•ny dicr.,.ed w,,,h M The penlt, a,- =..st bese, order of--a•iud larger I
nodal points at locatons r,, r, .... rw. for each of which is than the largest diagonal element of the fis •tem in Eq.
defined an orthonormaJ global shape funcuion, €•(r), such (A9). Although the final solution will not depend upon the I

that •,,(r ) =,, In oir calul-tons we use, linea" Chp, u acua ,,.lu of a., it must, be su.•,cently. lago fore the I
shape functions. rhe potential u is approximataxt by an eealntmal boundalry conditmonI of the sysumen.I



Z.,)uP, =ouu P. The finte element formulation for the
Poisson eauanon can now be wrntten as the following sys- (x,'..,...y -v V(x.y)-eo.,(x,y)l=E*,.(x,y),

:em of equations: (B2)

Ku=-f(u)-P. A12) and

3. Newton-R4aphson formulation Oo. n rn , E e, ' 193

The charge density term in Eq. (A10), f(u). isa func- 'Pr. on r .. <.,, ,n.

,ion of the potential, u. through the sermclassical Thomas-
Fermi screening model for the carrier density, as discussed or

.n Sec. 1I of the main text. ntu)=,V.F, .,, -u). and a Vi., fi,-O, on r,,,rurs
similar term is obtained for the hole concentration.
.V=-2 (2,fk9Tm*n/h2)Ja is the effective conduction band and

density of states and F,1 2 is the Fermi-Dirac integral of 'br on M <n. (54)
order .. We use the Newton-Raphson iteration method to
solve the nonlinear system of equations. If we let n denote
the iteration countl then we can represent the solution of where V(xy) includes the external potentials and 6,,(xy)
the n-- I iteration by =u,,(x,y)xk 9 T is the eiectrostaiuc potental obtained

u'l' =u, -. U'l, (A13) from Poisson's equation and fi, is the unit boundary nor-

mal. As indicated above, either zero-valued essmtial or
where Au' represents the change in the solution between zero-valued Neumann boundary conditions can be used to
;terations. The nonlinear function f can be approximated specify the decay of the wave function.
ov a rirst-order Taylor senes expansion: We will use the method of varations, as we did with

f (u+ ')=f (u") - fW) Au", (A14) the Poisson equation. to formulate the numerical method.
We identify the total functional as

where &((ul) is the partial derivative of f with respect to u

at the nth iteration and is given by the Fermi-Dirac inte-
grai of order - We substtute this expansion for f into I=1 I i-- Vt,,,'dfll
the system of equatons as follows: ,, 2m

Ku + 00 ") + p. (AIS) fn I 0

Ku'• K Aun = f(uu) -4-of(u") Au'+ P. (A16) 2, ,n

(K- (3f ( ))Au" =f (u") -.;- P- u'. (AIT 17) 1E - 2 a

The problem has now been reduced to a system of linear t - i
tiquaons in 1u at each iteration. We use the bulk value of

-he potential given by the Si-dopant concentration and the a, , r " (B5)

* :harge neutrality condition in each domain fl,,, as an initial ,, 2 r

guess. and then solve the linear system for Au" and update it

the solution u until the mean-squared difference between The minimization of the total functional yields
iterations is below a specified tolerance, typically I x 10".
A standard L/U decomposition method is used to solve
the sparse linear system usmig an efficient skyline storage 611=0 =o--= - I - 9-',.Vbdfl 1

technique. fn J0  * ;Ym V60 dfl""

APPENDIX B: FORMULATION OF THE SCHROOINOER + V 6) 6.dl
PROBLEM a,

1. Problem statement

* The solution domain for the Sch~rddinger equation is b,6df.Xar,,* ,}
-I

descnbed in the same manner as the Poison domain. The
quantum mechanical problem of solving Eq. (3) in Sec. II

of the mwn text. can be stated am follows: + X {a(ib -ebr, )(6 tr,,-f5b r..)
Find: (86)

)The state vanrable. 0i, is also subject to the boundary con-

such that ditions spec ed by Eq. (B3) or (B4). The zero-vaued



issentiai bounoary conditions are imoiementeo a•ove oy 2. Finite element formulatlon 1
,ie penalty method. but could also oe milemnenteci by The domain. ,l. for the Schrodinger problem uses the

.:ero-vaiuea Dinchlet conditions with a corTesoonoln2 re-

luction oi the number of unknowns. The iast term i Eq. same generalized discretization scheme developed for the I
B5) iriements the continuity of the wave function Poisson problem and is schemaucaiy shown in Fig. 15.

.icross the neterointerface by the penaitv method. The Using linear Chapeau basis functions we expand 0b(r) and

•chrodinger solution is therefore compatible with the Pois- 60b(r) in the finite element approximations: 0b(r) 3
-on solution ot the electrostatic potentiai. The solution to =.N(r) 0 0, 'b(r)-B(r).-, 6V,(r)=6vP. N(r)r, and

Eq. , B6) aDove is unique and equivalent to the solution of V60b(r) :60br. B(r) r. With these expansions, the van&a-
;he onginal problem stated in Eqs. tBI)- B4). tional formulation of the problem becomes

'6fl=O- r 5mb BT(r)B(r)dfl..0. 60. ( (V,-&()N*r -*N(dfl. t

6 % r , r i "," .

6,b r( E.. J 6b .- e.,,r)N(r)d1)0j ab .!

"MIR 
(B7)
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By using a Monte Carlo analysis of the camer relaxation in GaAs quantum wires following laser pho-
c>excitation. we show that camer cooling due to phonon emission and internal thermalization due to

electron-electron interaction are significantly decreased with respect to bulk systems. This decreased
thermalization is mainly attributed to the reduced efficiency of interiubband processes and to the re-
Juced effect of electron-electron intrasubband scattenng.

\lost studies oi tran'port in quantum-wire (QWR) and dimensionality of the system"9. as well as real-space
.'ther meF:jscopic systems have been primarily concerned transfer out of the I D system.'
with the near-equilibrium linear-response regime where The aim of the present Brief Report is to extend the
quantum coherence effects are evident (see, for example, analysis of nonequilibrium charge transport in quasi-ID
Ref. I and references therein). However, Cingolani and systems by studying csrrier relaxation following laser ex-
,.coworkers: have recently reported ultrafast pump and citation. In particular, we consider the role of electron-
prooe absorption studies of a quantum-wire system I electron scattering in the thermalization of the photoex-
wkhich carrier relaxation was observed to be considerably cited carriers, an effect which has been neglected in previ-
-iower than found in bulk systems under similar excita- ous treatments.5- Here the camer dynamics is modeled
!ion conditions. Under such conditions, the carner dis- using a k-space ensemble Monte Carlo simulation,' which
tribution is far from equilibrium, and many subbands of allows a semiclassical transient analysis of the shon-time
:he quasi-.ore-dimensiornal (quasi-ID) wire system are oc- evolution of the one-particle carrier distribution function
,:apied. The average energy of the carriers is well above during and after the generation of electron-Loe" pairs by
:hat of the lattice, and phonon emission is dominant as the time-dependent optical pulse.
j:arriers relax their energy in the return to equilibrium. As a model system, we consider QWR structures such

In such quasi-ID structures, the clectron-phonon- as those fabricated from multiple-quantum-well (MQW)
•catterilig rate is substantially modified by quantization samples by chemical etching.' This technique gives a
of the carrier motion due to the two-dimensional GaAs rectangular quantum wire confined in the vert-cal
confining potential, as well as by changes in the growth direction z) by AIGa1 _,As layers, and free
Frohlich-interaction Hamiltonian caused by phonon standing along the transverse direction (y). In the present
confinement and localization.' Calculations of the MC simulation of this structure, electron-polar optical
electron-phonon-scattering rates in quasi-ID systems phonon (EP) scattering as well as th- electron-electron
have been reported in the literature.3-` Both intrasub- (EE) interaction are included for both intraaubband and
band and intersubband sattcring rates for bulklike polar intersubband transitions. The EP and the EE interac-
,•ptical phonons interacting with quantized electrons tions have been shown to dominate the subpicosecond
were reported, including self-enzrgy corrections to ac- transient regime in bulk GaAs (Refs. 9 and 10) and in
count for oroadening of the final density of .,tares.2'6 GaAs/AI,GaI-_As MQW's (Refs. 11-13) for excitation
More recently, scattering rates have been calculated for energies below the threshold for intervalley transfer. We
both quantized electrons and confined phonons in the ID have deferred the study of scattering due to the photoex-
structure. Monte Carlo (MC) simulation of the carrier cited holes until later work to focus attention on the EE
dvnamics in quasi-ID systems under an applid elctric interaction alone.
field have been reported, and show features in the none- Scattering due to the EE and EP interactions is treated
quilibnum distribution function arising from the reduced using time-dependent perturbation theory within the ap-
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proximation of Fermis golden rule. To first -)raer. -ne _.ccount for inhomozeneities in t'e ".xre width as dis-

net scattenng -uate due to confined pnonons in oW %s- ..-ussed elsewhere.-

tems riffers little from that caiculatea using bulk rno- Carrier-carrier scatterinm in the QWR system is as- I
nons. at least tor well widths of about 100 A or more. In ,umeO to occur via a staticallv screened Coulomb interac-

!he present worK. we thus neglect phonon confinement :ion the ,oniv affordable method in MC simulationsi ,

effects due t, rne heterojunction interface and assume which is similar to that useu in -D.Ref. Si and quasi-2D

that the pnonon modes are infinitely extended in tne .ert- ,ystems.' The unscreened matrix eiement of the bare

icai z directon. Fuchs and Kliewer slab modes- are as- Coulomb potential between particle I of momentum k,

.umed in the lateral direction confined by air on either -n subband i with a second particle 2 of momentum k, in-

side. Broadening of the energy levels is also included to itially in subband j is given by

H ' L f z f o, f dz ' f '( , -. ..: (P n

xb6k-,-k,--k - K .q•,V.v-y Z - ' Z

where €' v. z is the free-electron wave function in subband t. K0 is the zeroth-order modified Bessel function, q, is the

wave vector exchanged in the x direction, k' - k, and L is the simulated length of the wire. The final subbands ,!,er

,cattering are m for particle I and n for particle 2. The total scattering rate for an electron of wave vector k, in a given

,uoband i is given by the sum over ail final states for this electron and over all initial and final states of the partner elec- I
tron. Neelectmn tor the moment degeneracy effects degeneracy is accounted for later with a reJection technique), and

:_sing conservation of energy and momentum, the EE ,cattenng rate becomes

H ec, . ,eel , i12

2-E-ff in _ k. <, -, -, k

q, kp.i .

where At- is the relative mass of the two carrers after scattering, and q , and q, are the two possible values for the ex-

changed momentum: Ik --
i3

, n rin. n ' mm r m. in 1 'i,' m ,.

-,here A=Eý -E, -E, -- E. is the difference in the sub. by the dashed and dotted lines, respectively) due to the

hand energy levels. As is evident from Eq. .3). for every orthogonality of the eigenfunctions. It is interesting to

-air of interacting electrons there are only two final states note that this type of scattering never creates new states

available. If. at the end of the scattenng, the two carriers in k space, and thus does not produce any thermalizing

remain in their respective subbands, the only final state effect, only an energy redistribution between different

available is that in which the electrons exchange their subbands. The only scattering that enables a generation

crystal momentum. Such scattering is irrelevant it both of new k states (and thus momentum relaxation) occurs

Darticles originate from the same subband, since the two for intersubband scattering. In this case. the difference of

particles are indistinguishable. If the two electrons are in energy between the initial and final subband-e enters into

different subbands, this interaction produces a significant the conservation law and allows the creation of two com-

energy exchange between the subbands. We shall still pletely new states. A typical transition is shown in Fig. -

refer to antrasubband scattering as the interaction of two I(b) by the dashed line. As mentioned earlier, such inter- U
electrons that lie in different subbands, as long as they subband scattering is greatly reduced due to the small

remain in the same subbands after scattering. Intersub- form factor, and so thermalization due to carrier-camer

band scatternng then refers to the case in which one or scattenng is signtficandy reduced compared to that in

both of the electrons change subbands. The relative higher-dimensional systems.

ýtrength of intrasubband versus intersubband scattcnng The screened scattering rate can be computed using the

depends on the magnitude of the EE form factor given by bare Coulomb potential dressed by the dielectnc function I
Eq. ! I'. Figure Ila) shows a plot of this form factor as a of the carrier system: U
function of q, for several different types of intrasubband

and intersubband transitions illustrated schematically in H"(q)-.
Fig. l:b), The continuous line represents the intrasub-, q I I
",and scattenng between electrons in the first and the

,econd subbands. The form factor peaks at small q,, and where F. is the dielectric matrix of the multisubband sys-

Is much larger than the intersubband form factors (shown tern. The static, long-wave limit is taken which allows
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the analytic determination of the determinant above. curred. even after I ps. In contrau to this result,.the
The MC method adopted here is substantally the same bulk case (Fig. 2(b)] is completely thermaiized after 400

as that used in the simulation of bulk GaAs and fs. The result illustrates the greatly reduced effect of in-
GaAS/AI,Ga, -,As QW's.' with free motion in only the trasubband EE scattering in a ID system in contrast to
X direction. A rejection iechnique has been applied to higher-dimensional systems due to the reduced phase
take into account the Pauli exclusion pnnciple in the final space of the final state. Since thermalizauon in the pres-
,tate after scattering, similar to that used in the 3D and ence of EE scattering alone may only proceed via inter-
'D cases."' As a model system, we have considered a subband events in a QWR system, the time scale is much
100.A GaAs layer cladded by Al0 3Gao0 7As layers on ei- longer than that required in 2D and 3D.
ther side in the z direction. The lateral width is chosen to Figure 3 shows the combined effect of the EP and EE
be jOO A, which gives a total of ten ID subbands in the interactions, for both the QWR (Fig. 3(a)] and the bulk
well. [Fig. 3(b)), respectively, when a higher excitation energy

In order to simplify the analysis, we have considered is used (170 meV). The peaks present in the QWR aimu-
only photoexcitation from the heavy-hole band to the lation correspond to the position of the submnd minima
conduction band. The laser excitation is assumed to have indicated by the arrows shown in Fig. 3(a). The distnbu-
a time duration of 50 fs and a spectral width of 20 meV. tion function in the bulk is broadened with respect to the
All the simulations were performed at a lattice tempera. QWR case during the Lser excitation, due to the Srona$
ture of 10 K with an equivalent density of I101 cm- 3 . effect of the EE interaction, and is completely thermal.
Electrons are generated in all the energetically accessible ized after 300 fs. Again, the dotted lines in parts (a) and
subbands (assuming that the An ý0 rule holds for transi- (bN correspond to a heated Maxwellian distribution at the
(ion between valence- and conduction-band subbands temperature of the electron gas. In the QR, the distri-
proportional to the final density of states). bution function approaches that of heated Maxwellian

In Fig. 2 we show the results of a simulation performed only after I ps. The presence of both scattering mecha-
with a low excitation energy (43 meV) where only EE nisms significantly increases the thermalization rate com-
scattering is considered. The results are plotted versus pared to that of EE scattering alone (Fig. 2(a)], since the
the magnitude of k to illustrate the difference between the emission of polar optical phonons allows the electrons to
simulation results and those of a heated Maxwell- access new momentum states in conjunction with in-
Bolizmann distribution (shown by the dotted line) of the trasubband EE scattering which redistributes energy
same average energy as the injected distribution. In the among the vanous subbands. The combinWd thermahn-
QWR case (Fig. 2(a)), very little thermalization has oc- tion rate, however, is still much slower than in an

10 (a 1.0,

10- - 11-22ttips Ma
S|0t

-_ 10.;o -g .

0.6

S............

E 0.2
E t-5

10.13 .z 'U

q. 0 /cm) (b)
- 0.8 *,......f. -

(b) IALe

I .V.t 41M 50

I 0.0 .4

_____________________________ I0.0 2 106 410 ~ 610'

FIG. 1.a) The form factor for EE transitions. Eq. (I). show- k (I/cm)

ing the intrasubband (solid line) contnbu.ion for two electrons FIG. 2. (a) Electron occupation numaer in the QWR at two
lying in subbands I and 2. respectively, and the antersubbenci different times when-only EE. interaction is included as a fu•.
ones (dotted and dashed lines) for an electron jumping from sub. tion of k,. The dotted line represents a heated Maxwelian at
band ! to 3 while the other reamunt in subband I (dashed line) the tempemtare of the electron gas. bI-The same ondit
or 4 Aotted hne). Nb) Schemauc representation& of the fMu two simulated in the bulk (in tW cw• u U.mnodnlimof" the "i-
electronic iramnuons described above. momeintumn.
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FIG. 3. 'a) Electron occupation number in the QWR at three different times afJter the excitation including both EP an EE scatter-
ing. ib) The same conduains above repeated for the bulk.I

equivalent bulk system, as illustrated by the companison band versus rntrasubband scattering. A strong reduction
in Fig. 3. This slow thermalization in the QWR system is in the eliciency of the single-particle intercarrier interav:-
consistent with recent measurements: where a very. slow tnon is shown, which results in a slow internal thermaliza-
therrnahzation was found, tnon of the photoexcited electrons.

[n summary, we have presented a Monte Carlo study
of photoexcited carrier relaxation in a quantum wire with
realistic dimensions in which electron-electron and This work was partially supported by "Coaaorzio Na-
electron-polar optical phonon scatternng is included. The zionale di Fisica della Matena JINFM)," and by the EEC
energy relaxation rate due to electron-phonon scattering Commission under the Espnit Basic Science Project *
is reduced due to the relative strength of the intersub- "NANOPT."l
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FIELD EFFECTS IN SELF-CONSISTENT TRANSPORT CALCULATIONSI FOR NARROW SPLIT-GATE STRUCTURES'

"Henry K. Harbury. Wolfgang Poroid and Craig S. Lent
Department of Electrical En onena

University of Note Dame
Notre Dame, IN 46556

iReccived 19 May 1991)

i We study local potenual variations due to self-consistent space-charge effects in cal-
culanons of coheient transport in narrow split-gate stracmns. We present a numerical
technique bas•d on calculating the Hartre potntial from the chargp density obtained by
solving the two-dimensional effective-mass Schrodinger equation for scattermng states.
and from the bound chug density obtained from a semi-clussicsalTahonas-Fermi screen-
ing model. This method allows us to btain the local se•f-consistent poIential varlationio

i close to scattering centers exposed to an incident flux of electrons,

I 1. Introduction ference between iterations converges to within a desired
tolerance.

Many recent studies have appeared in the literature
,nich present calculations of conductances in narrow split- A. Problem Domain

Saie structures that can be realized using advanced fabnca-
:ion techniques I lJ. In these calculations the Schrodinger Our model of the device geometry consists of a dis-
ýquation is solved for the channel geometry to obtain trans- :retized calculation domain. i... of" mesh elements con-
mission coctfictents. from which the conductance !s oh- nected to input and output leads. ili and ill. as shown in
tamed. It has been pointed out 121 that self-consistent ef- Fig. I- The current carrying leads attach to the edges of
fects may be significant in these structures, but it has been the calculation domain, at r = 0 and r = 1. and extend
pmhibitively difficult to include them in the numencal cal- to infinity. Although the leads ame not pan of the calcu-
culations. lation domain, the charge ':ontained in the leads must be

We present a technique for captunng self-consistent included in the numencal model for the Hartree po1mtial.
space-charge effects in two-dimensional transport caklula- For simplicity, we assume hard-wall boundary conditions
tions in split-gate srwxtures. We study the self-consistent for the conducting channel. A split-gate smwutum is real-
sananons in carrier density and local potentials close to ized by adding a large fixed potential ,n the ge regOn:
scattering centers exposed to an incident flux of electrons. of the problem. The size of the calculation domain mo

be sufficiently large that the disturbance due to the con-
2. Numerical Method sr-iction has decayed at r = t and r = i. Selecting device

geometries that are symmetric across the channel enables
Self-cormsiste electronic states anm obtained through us to solve the problem on only one half of the original

3n iterative solution of the 2-D Schrodinger equation us- domain. The resulting bandwidth reduction siginificanldy
ing currmnt carrying boundary conditions. Any bound lowers the computation ime.
elecamotic charge is approximated by the semi-classical
Thomas-Fermi screening model. "The Harmte potential due B. Effective Mass Schr6dlnger Equation
io the electron density is explicitly determined from the
total charge density in each iteration, and is used to calcu- The 2-D effective-mass Schn'Wdinger equation is repeat-
late the electronic states in the subsequent iteration. The edly solved on the discretized spstial domain for the tray-
>elf-consistent solution is obtamined when the potential dif- cling wave "scattering states". I',- denotes the confining

I 0749-6036/92/020189 + 05 502.00/0 © 1992 Academic Pre Limied
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-=d I Te .,um includes tne .. ae-luncUons due to injection fro i

,)both icad I and lead 2. in the linear response regime
injection is svmmetrtc tot both leads and this can be used

to reduce computation iume. We typically rind that twenty

t terms in the summation over eiectronic states am sutfctent.
Bounid electronic ,tates can exist inside the scatter-

tog region if the total potential dips below its asymptotic
',alue tar into the leads. The quantum mechanical ele:-

x ,roi density obtained hor traveling states dces not contain

i.ny coninbution that may arise from bound charge irside
X=50 5l the problem domain. It this contribution is neglected

;he electron density wouid be undermtimaie in the it-
FIGURE I Schematic or the cnannel geometryv sowine Pon ,t a potential well. -esuitmni in a largtr attractive

'.te Inite ent."rent "omain. ' r.U the icads. .!. and -•.l"iree potential .and uoseouentiv in unqutabk runaway

T.he shhaded reýuonb represent ,:e ,onnning gate potentials. conitiion. Ai a rsi order aoproximatton. we choos to
model the bound-state electronic charge density with the

semi-classical Thomas-Fermt screening model. If the po-
cn.nne! Diotenia. • represents the self-consistent H1anrTe tential in the soiUtiuon domain is lower than its asymptotic

potential, and i;," is the electron effective-mass, value in the icads, ',,,, ;., , <. - ,,,o. i), then a semi-

classical electron density is obtained at the point1 r. v by

. , l. ... p. rl, ,II.,l. ,l= F.rlIr.i). . .- t-l. iI - .. .ý where t _, s the

total potential us ed in solving the Schrodinger equation.
.I This simple approximation over-estimates the total dec-

Deep inside the leads. i e. tar from the scattenng region. rton density in the reiton of a potential well because we
we assume free eleciron propagation. T'he electronic wave till a dicrete quantum ',stem with a continuous electron

function can be lacionzed into a longitudinal plane-wave density. The over-estimatinn, however, will cause the po- 3
part. , ;,, at, '. Jd a transverse part with quanized modes. ,ential well to become mitre shallow" in the subsequent [
. ,,, ,1, ,nicn are cue to the confining potential of the iteration resultmin in a sm;ller semi-classical electron den-

,:hannel. The scattering eigenstates for irJection from the 'itv.

,eft-hana lead. . n mode a are. therefore. of the form. To maintain charge neutrality, a compensating positive

background charge. , i, s needed. The background charge

., . -s obtained by enforcinm charve neutrality in the leads. The

_X ," !-- -c ocal disturbance caused by any constrction is assumed oi

21 be completely contained within the problem domain. Qo,.

The index t runs over ati possible transverse modes with negligible effect in the leads. This critenon allows
with /-' = , -, , , 2i," ,. whnch includes both traveling us to model the charge density in the infinitely extending
wit leads as a continuation of the charge density at the edges of U
and evaneseent states.$,

the problem domain. ,iR = '2,r,ifl. rVidy = p• ml. i)•'ld.
The hinite eiement method is used to reduce the prob- the positiv e backgroun nelts the

lem to a large system of coupled linear equations. T'hee positive background neglects the

Quantum Transmitting Bounoary Method (31 is used to fact that in most 2DEG systems the positive donors are

implement the finite element boundary conditions appro- in a parallel plane isolated from the carers by a spacer I
pnate for the current carrying leads. layer. Although we do not model the spacer layer in these

calculations. one :.ould. in principle, use an "eff'!crive"

C. Charge Density positive background charge density without changing the

The eieciron density in the channel due to current car-

rying states is obtained by explicitly summing over the D. Hartree Potential
contributions of all occupied scattnng states. We assume The Hartire potential at any location i z. v) is obtained I
the linear response regime and zero temperature. The scat- by explicitly summing over all charge contributions in the
tenng state electron density is then given by summing over channel,

all states with 1. < ."--

'- - •Eir .4,I. ,I. I!';% 'It= . f ,'t ;v dr'iiv I
'I' - t!
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eintecai can, be• roken into three distinct contibutons, E. Self-Coilsistenice

th ter di !Id The resulting 'an•.rec potential is used to modify theand the two leads. {1, and itl, respectively. The term due 'h sln H ponia SUd 0m iyth

to the chae densiy inside the solution domain. I t s total potential on which the Schrodinger equin is solved
explicitly calculated by Gaussian quadratur on the finite in the subsequent iteration. The scif-con$1awet potential
elements. The components of the Hartrie potential due and charge density ame obtained when the difference in
to the infinite leads. 1 I'/' and Vil. must be. in part. cJa- the total potential between trations converges to within a

culaied analytically. Using the conditions of charge neu- ipecified tolerance.Iralitv across the leads. i,' ,pi1.t = 0. and of tanslational
;nvanancc down the leads./) r > i. ) ii i•. ij). yields 5. Results

" :,"' :".... ")) A.. Open Ch'annel I

7 W\Ve first investigate the electr'onc charge det.sicy and

-The aDove inteiral actovv the lead is evaluatedI numerncally the Harntee potential for an open. unconstricted channel.
':.Pm the charge dens~iy :Jr !he edge of the nnmte element The solutions mus•t show translational invanance down the

domain..,i. ,,q. We obtain a similar Hart-ce term due to channel, namely p, r. , = pt iy and Ii M . I/) d the

:he charge density in the left lead. I "I. This provides a test for the Hanme potential obtained by

summing %,, 11".1 and 1', . We choose to study singleI mode injection ty occupying states up to a Ferint energy
that is below the second subband in the leads. Fig. 2
shows in part (a) the liaree potential due t the solution

domain ,,,_ and in pan (b) the sum of both Wad lconmbu-Iions. + .,'', after the first itera:;on. The tout Hartee

a potential, which is the sum of (a) and (b), results in thei potential shown in Fig. 2(c) and exhibits the desired trans-

1 00

Ii 101

ia.2 b-

10"CC

1: a 1 9 20 2 30 3 40

I FIGURE 2. The components of the Hartree potential for

the open channel after the fint iteration: (a) VA,. (b) V5"- +- FIGURE 3. Shown is (a) the converged open channel

"' I". (C) I",. potential. arid (b) the iteration error.

I
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4 a

h~ d1I
I-IGURE 4 Shown is (al the charge density for the con-
,tricted channel tWNW structure) after the hrst iteration.
b) the new total potential after the first iteration. tc) the I
-r' ,"T,, a, &e.-rr'in density in the second i.r-tion, and

-d} the total charvc density after the second iteration. I
!ational invariance. This clearly shows that the Hartree pox Fig. 4(a) the charge density after the first iteration for
iential due to charge in the leads exactly compensates for ,ingle mode injection, and in Fig. 4(b), (c) and (d) the
ine to(iential due to c•arge within the domain, and is a very new tot;l potential used in the second iteration. the semi-
,:ntical test of our numerical method. Because the total pI- classical electron denmitv. and the total charge density after n
'ential in the solution domain. Sl,, does not ,.op below its the second iteration respectively.
jaymptotic ,aluc in the leads, there are no bound eiec- The first iteration cnarge density far from the consmc-
ironic states in the open channel. The Harnme potential in ioio asymptotically approaches the case of an undisturbed
Fig. -'c), obtained from the completely quantum mechan- system. The leakage of charge between the split gates inf
ical electronr densitY, is used :o modify the total potential the first iteration is small enough that the charge density in
,-ih which the Schmhdinger equation is solved on the sub- Fig. 4(a) resembles the solution of the toudly conssmcted
,'quent iteration Fitz. 3•la) shows the converged solution channel 151. T'oe smaller electron density in the gate re-
atter 37 iteraiton%. a-J Fiv ',,b) plots the change in the gion in Fig. 4(al results in the formation of a potential
total potential between iterations versus iteration number. well through the Harmee term used to obtain the total po-
"The algorithm is stable and convergent for the open chart- tential shown in Fig, 4(b). This pownual well in the gate 3
rel and. as Fit. 3(a) indicates, the "Hor" of the quantum region will. in subsequent iterations. cause an inc1ease in
wire is "buckled'" hv Neveral meV the local electron density near the scattcring center. This

B. Constricted Channel results both from an increase in occupied tuaveling states
through the gate region and from the semi-•lasical model

We finally invemneate a Partially constricted channel, for the bound elecutrn density, shown in Fig. 4(c),
,lir model for a narrow split-gate structure. We show in since .he potential in the gate region dips below the po-

I
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:ential far into the !cads. The total charge dcnsitv obtained illows us to investlgate the local self-consistent potentid
in the ,eiond iteration, due to both the electron density ',.anaiions close to Nattering centers exposed to an incident

or the traveling -states and the semiclassical bound elec- iux of electrons.
iron density, is shown in Fig. 4Wd). The increase in the For the case of an open channel, or quantum wire, we

clectron density near the scattenng center is clearly visi- have demonstrated the validity of our method ad achieved
ble. Although not fully converged, it is clear from these a fully convertent soluton. We pntsenid gome result for

calculations that the oscillations in the local field near the a parially coamcted channel, or narrow split-gaut s'uic-

s-attenng center due to self-consistent space charge effecLs ture. but for this case convergence his been difficult to

could be significant in transport caiculAtions since they will achieve. More work is needed to cruwe convr•gin of
etfect tne transmission amplitudes of the structure. The os- the self-consistent cycle for general split-pe stifuctues.
.illations tn the potential due to a scattenng center tn the

W(Aqx channel can extend up to a half micron into the leads. 5. References

ji•d are on the order of a few meV. Although the poten-
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The two-dimensional spatial distnbution of the current and Fermi carriers aroun. localized elastic
scatterers in phase-coherent electron transport has been calculated using a generalized scattering-matrx
approach. The distmbutiona show dramatic differences depending on whether the scatterers are attrac-
tive idonorlike) or repulsive (acceptorlike). We find that attractive scatterers can produce strong vortices
in the current, resulting in localized magnetic moments, while repulsive scatterers produce much weaker
vortices and may not produce any at all in quasiballistic transport ifew impurities). This is a significant
difference between majonty-carrier transport (when the scatterers are attractive) and minority-carrier
transport (scatterers are repulsive). The vortices are caused by quantum-mechanical interference be-
tween scatterers and are accentuated by evanescent modes which have a stronger effect in the case of at-
tractive scatterers owing to the formation of quasidonor states. We a!so examine the influence of the im-
purity configuration (positions of the scatterers) on the nature of the vortices.

1. INTRODUCTION two-dimensional structure confined along the width)
whose width is comparable to the Fermi wavelength and

The spatial distribution of the current and electric field in which transport is multichanneled. The results consist
around localized scatterers in electron transport has been of the computed conductance versus Fermi energy, which
a subject of significant interest even in the late 1950s.' show quantized steps associated with subband filling in
After a period spanning more than two decades, it is quasiballistic transport2 The nature of these steps is very
again receiving attention' following the advent of mesos- different for attractive and repulsive scatterers and de-
copic systems that exhibit phase-coherent electron trans- pends significantly on whether or not evanescent modes
port. In this paper, we present results based on a (i.e., transport channels with imaginary wave vectors) as-
rigorous solution of the Schr6dinger equation that show sociated with unfilled subbands above the Fermi level are
the spatial distribution of current and Fermi carriers (i.e., included in the analysis. In addition, we have plotted the
carriers with the Fermi energy) in a two-dimensional current and Fermi camer-concentration profiles for in-
semiconductor of finite width in the presence of 8 scatter- jection from each filled subband individually as well as
ers. The analysis is fully quantum mechanical and in- the total current and Fermi camer-concentration
corporates the effects of phase coherence of the electron profiles. These plots show that strong current vortices
wave function-a feature that was neglected in the previ- can form in the presence of attractive scatterers in both
ous work of Refs. I and 2. Our results indicate that there quasiballistic and diffusive transport. When the scatter-
are dramatic differences between the current distributions ers are repulsive, vortices usually do not form in the
for attractive and repulsive scatterers. Similar differences quasiballistic regime, but weak vortices can occur in the

ire also observed in the distributions of Fermi carriers, diffusive regime. We also show how the vortices are
In addition, we find that current vortices can form in the influenced by the impunty configuration and discuss the
vicinity of impurities resulting in localized magnetic mo- relationship they have with quasidonor states that form
ments. These vortices are caused by quantum- when the scatterers are attractive. Finally, in Sec. IV, we
mechanical interference between elastic scatterers and re- present our conclusions and discuss interesting features
quire the presence of evanescent modes. They also affect that may be observed in the presence of a magnetic field.
the Fermi carrier concentration. Finally, we discuss how
the localized magnetic moments associated with the vor- II. THEORY
tices may lead to interesting features in low field quantum
magnetotransport. We consider a mesa as shown in Fig. I. The structure

This paper is organized as follows. In the next section, is single moded in the z direction, which means that the
we briefly present the theory used in computing the two- thickness along this direction is less than the Fermi wave-
dimensional current and Fermi carrier-concentration length, so that only one transverse subband in this direc-
profiles. In Sec. III, we present results for a prototypical tion is occupied. The width W along the y direction can
structure which consists of a disordered GaAs mesa (a be larger than the Fermi wavelength, so that multiple y-
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0 sion given by

2rn*

where k, is the x-directed wave vector.

The x-directed wave vector k of the nth mode at the I
- Fermi energy EF is obtained from the above equation as

FIG. 1. A GaAs mesa of length 1160 A and width 1000 A V2m *( EF -E,U
with a random distnbuuion of four impunties inside. _8)

directed subbands may be filled. The structure contains a If EF > F-,, then kil is real. We call such a mode a propa-
number of elastic 6-function scatterers whose positions gating mode, which corresponds to a subband that is oc- I
(i.e., the impurity configuration) are generated by two in- cupied at T=0 K. If, on the other hand, EF < E,, then
dependent uniform random number generators (tor the x the subband is empty and kF- is imaginary. We call such
and y coordinates). In all our analysis we assume a tern- a mode an evanescent mode. In the linear-response re-
perature of T=0 K and linear-response transport. gime, only the electrons at the Fermi energy carry.

The Schr6dinger equation describing electron trans- current. Therefore, the evanescent modes wiil themselves
port in this confined two-dimensional disordered struc- not carry any current, since their wave vectors are imagi- *
ture is written as nary. However. they can affect the transmission

coefficients of the propagating modes that car-y currentri d- .-r IV'• = Et d. 1) and thus have an indirect but significant effect on the
"current in the structure.

where m ' is an isotropic effective mass and the potential The total %ave function t,,.,x,y) for an electron inject-
energy Vconsists of two terms ed from the subband m in the left contact with the Fermi

V --- V(x,y)= V:(y)•+ Vmp X,Y) . ,2) energy can be written as

The first term gives the effect of the confining potential in
the y direction and the second term is due to impurities. ' [ Ap(x)exp(ik x )+Bp exp( -ik x )IXP(y)
For 6-function impurities, we have =p1 Vk-

V,'p=y 6(X - X8(y -y; 3) (9)
where the summation extends over both propagating and

where s is the total number of impurities in the structure evanescent modes ithe total number of modes is M).
and the summation extends over all the Impurities. The When the wave function is written in this form, all propa-
position of the ith impurity is denoted by tx.,y, I. gating modes carry the same current. We now only have fl

The assumption of a 6-function shape for impurity po- to evaluate the coefficients A,, tx) and B.,,tx) to deter-
tential is of course not realistic for modulation-doped mine the wave function. If we know these coefficients at
samples where the scattering potential is smooth. More any position ix0 .y ) in the structure, then the coefficients 3
realistic scattering potentials have been treated in the at any other position (x ,y) can be found from
context of quantum transport in narrow channels.' but
here we are only interested in the basic physics of the ro Jill t~ 1 ,
spatial distributions. For this. a 6-function potential r itif ,: j0 (10)
serves just as well. ""

The confining potential V1y) gives rise to an orthogo- where 1; is a column vector of length M whose elements
nal set of transverse modes m y 'or subbands) whose wave are .4A,lxo), A,,2kX), A,,3tx), .... , A,•,•,(xo), 10 is a
functions satisfy the eigenequation column vector of length M whose elements are

A2 2 Bm(xo),B, 2(xo).B,. 3tx 0 ), .. .. B.,,;(x 0 ), ro is a column
.1 .4- V_.(y) Iuy) X"(y) ,4) vector of length M whose elements are

-2rn -Vy" j A ,i(xIIA,,A X I,AI A 3 x, 3 .. A,. 4(xI), and r, is also
where E, is the energy at the bottom of the nth subband, a column vector of length M whose elements are
Were assis hardwall boundary conditions, which give B,,,(x, ),B,, 2(x, ),B,, 3jx, ) .... B,44 (x,). The coef-

ficients t, i, t,, itI, and t,, are each M XM matrices and •

y sn the square matrix in Eq. (10) is the so-called transfer ma-
y~y=V . ' trix for the section of the structure between x =x 0 and

x ,. A pictorial depiction is shown in Fig. 2. 3
n -r 2 '6) The above equation allows us to determine the

'2mn W coefficients A.,,x, ) and B.• (x,) (and hence the wave

function) at any arbitrary location x, if we know the
Each subband (or mode) n has a parabolic energy disper- wave function [or the coefficients A,,,',xo) and B,,P(xo)] 1
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-I er unknowns that we need are the element.s of the transfer
S 2 0 matmx appeanng in Eq. t 1O) which are related to the ele-

ments of the scattenng matrx for that section by the sim-ple relations:

21 22 r t r-r't')r '.
0 r• ._ I, =• ir t,,13t)_

Once we have evaluated the scattenng matrices, we
S t2have therefore found all the quantities that we need to

0 1 1 12 evaluate the wave function everywhere in the structure.
Equations 9)- 13) are used to determine the wave func-

S1 2tion. This method of finding the wave function, althoughL_ t straightforward, is, however, computationafly not robust.
Trnfrmti A problem arises when evanescent modes are included in

T rmatrx the analysis, which causes the matrix t' to become near

singular and makes its inversion (required in Eq. (13)1

difficult. To avoid this problem, an alternate approach

F1 0 rwas used in obtaining our results. This is described7I below.
To find the wave function b,,,tx,y) at any position

0 K x,y), we need to know the coefficients A,,,p(x) and
L-- ' B,,(. For this, we break up the structure into two

Scattering matrix sections-one interposed between the left contact and x,
and the other between x and the right contact. Referring

FIG. 2. Incident and refected waes. at any arbitrary section to Fig. 3, we can relate the column vector a,,, [containing
of the structure. The relationships between the waves are ex- the coefficients A,,P(x)i and the column vector l,,, [con-
pressed through the transfer matx (Eq. (10)) and the scatterng taining the amplitudcs B,,,x) ] to the column vector a,
matnx [Eq. 012)). [containing the amplitudes A ,,(x =0-) at the left con-

tact) and the column vector b, [containing the ampli-

at any one point x =xo in the device. We do know the tudes B,,,(x =0- )] through the scattering matrix

wave function at the left contact (x =0- ,. We assume b ,J , 1 ami
that for injection into the ruth mode, it is given by the am (14)
scattering states5 (this is our boundary condition);t r

expiik'x )',i,) The above scattering matrix describes the first section.
-- Similarly we can write a scattering matrix for the second

, -F section as (see Fig. 3)

4-l 18-+ ,'[c = <i j (15)

II) r.k•Ic z ,t a:i .o,,

so that .4.,, Px =0- •S,,• iKr6nicker delta) and Bp It is easy to see from the above two equations that
ix =0- i=R,. Therefore, we can find the wave func-
tion anywhere in the structure using Eqs. t10) an (1 1) if a, =tea , r ,a, . . (16)
vwe know the transfer matrix between the left contact and

the region of interest, as well as the coefficients Rp. -
These are found from the appropriate scattering ma- a --- .h-c
trices. The scattering matrix for any section relates the" /""-
amplitudes of the waves reflected from that section to the LM Ilo
incident amplitudes (see Fig. 2) according to Caimct1  I

b4I.-.- i -2 
2

r I , (12)
ro I t r' r,

where t,. t', and r' are the elements of the scattering -

matrix and are themselves MXM matrices. The pro- I.

cedure to derive the scattering matix for any arbitrary FIG- 3. A structure is decomposed into two sections with a
section was described in Ref. 6 and will not be repeated common boundary at the coordinate x. The wave amplitudes at
here. The coefficients R,,,• are simply the elements of the x are related to the wave amplitudes at the left and right con-
matrix r appeanng in the total scattering matrx for the tacts through the two scatterng matnces describing the two
entire structure and can be found directly. The only oth- sections.
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Substituting the second equality in Eq. '1l) into the first J , y • JA:...I
cqua! v of that equation. we get 'rop4l8gang mes

:,ropagattng - ,aneswent

3. =r.l- r:, r ;a,,,1
The above superposition is justified since we assum hat

where I is the identity matrix, there is no phase coherence between different modes i I
Since the scattering matrix elements tor both sections the contacts. so that the total current or Fermi larrier

can be determined from the recipe of Ref. 6 and, in addi- concentration is the incoherent superposition of i e con-
tion, a,,, is also known from the boundary conditions trtbut:ons of each mode. This picture is consistent with

S.., = x0- 8,J , we can easily flind a,, and f,,, the Landauer-Buttiker formalism of linear responses in
from the above relations and this gives us the wave func- which the contacts are viewed as ideal reservoirs.

tion at any arbitrary position x. This method does not

suffer from the numerical instability of the previous I
method whe. ývanescent modes are included in the I11. RESULTS
analysis, pro%. d, of course, that r' and r, are not too
large. Unless transport is strongly diffusive and ap- A. Conductance versus Fermi energy I
proaches the strong localization regime, r, and r, remain for attractive and repulsive impurities

small enough to prevent numerical instabilities from in the quasiballistic regime

affecting this method. I
The wave function d.,,Ix.yv allows us to calculate the In Fig. 4. we show the conductance versus Fermi ener- g

current density J_! x-v i and the Fzrmv carrier concentra- ay of a GaAs mesa 1000 A wide and 1160 A long. The

tion n-, for inmection from each mode m structure contains four impurities that are randomly dis-
tributed within the sample. In all cases the strength of

lqhf_. each 6-tunction impurity was assumed to be such that the

2rn " L M quantity y Isee Eq. 63)] = 3 feV cm-.

The conductance was calculated from the two-probe -
-!,'(x,y )7tb,,,,.x.y)l, 19) Landauer-Buttiker formula' in which the transmission

nx Ih,,,,)V x.yi, " .V20) was calculated directly trom the scattenng matrix follow-
ing the prescription of Ref. 6. The curves show the usual

The total current density is found by vectorially adding quantized conductance steps associated with subband
the contributions of all propagating modes and the total filling. Even though there is disorder in the channel, the

Fermi carrier concentration is found by the scalar addi- c . .ntization of the conductance is not destroyed as pre-

tion of the contributions of all modes, both propagating dicted by some authors4- " because there are not enough
and evanescent. impurities for this to happen. The effect of the impurities I

- I pukreimpunties

KLautrao eiivmpunlle,

'- .o -- -3--I

S40

:+- I

10) 440 S.80 13.20 17.(60 22.00 I
Fermi Energy E,(meV)

FIG. 4. The two-terminal lirnear-response conductance vs Ferm! energy for the mesa of Fig. I. showiniz iu.ntized conductance
steps. The steps for attractive impurities have lower heights and dips preceding a step, due to the formatic: c:: ,aasidonor states as-
sociated with the impunties. Forty evanescent modes were required to obtain convergence of the results e;.-1 though the largest
number of propagating states was six.
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in this quasiballistic regime is twofold: it reduces the respectively. It is obvious that the electron concentration
height of the conductance steps since is reduces the is larger where the vortices form, since the electrons are
transmission through the channel, and it causes ringing partly locahzed in these regions. In Fig. toe), although
in the characteristics because of wave interference effects the vortices have nearly disappeared, the concentration
caused by multiple reflection from the impurities. " " ,f Fermi electrons peak near the impurities because of

The conductance characteristics are plotted for both electrostatic attraction the impurities are attractive).
attractive and rtepulsive impurities and show pronounced The concentration profile is much smoother for repulsive
differences for the two cases tmajority- and minority- impurities, since no vortices form in this case. Because
carrier transport). Attractive scatterers lead to a lower the concentration variation is much more rapid in the
conductivity and also observable dips in the conductance case of majority-carrier transport. we expect space-
both of which are caused by quasidonor states forming charge effects to be more important in this case as well.
just below the subband minima. In fact, the dip energies However, we have not considered space-charge effects in
correspond to the energies of these states. These have any detail in this paper.
been reported by other authors as well.'`-14 Repulsive
scatters do not produce dips since there are no quasi- D. The influence of evanescent modes
bound states associated with them. In calculating these in the quasiballistic regime
,-urves. we had to include 40 evanescent modes to obtain.onvergence of the results, even though the largest num- In .i (a ws the cent potes, for fu ig-
her of propagating modes kcorresponding to the highest purities in the absence of evanescent modes, while in Fig.
Fermi energy considered) was only six. 'ib we show the corresponding electron concentration

profiles. These should be compared with Figs. 5(c) and

H. Spatial distribution of current 6(c, where evanescent modes were included. The vor-

in the quasiballistic regime tices do not appear when evanescent modes are neglected.
This can be understood as follows. The wave function

In Fig. 5. we plot the current profile corresponding to a must be peaked where vortices form [this is apparent
Fermi energy of 4.8 meV, which is slightly below the from the Fermi carrier concentration profile in Fig. 61d)]
third subband bottom. At this Fermi energy, there are since the electron is partially localized around the vortex
two propagating modes in the sample. Figure 51a) corre- center. The wave function everywhere is a linear super-
hponds to the cuirent pattern Ior the first mode (J, and position of particle-in-a-box wave functions, which are
Fig. 5ib) corresponds to the pattern for the second mode the normal modes of the system. In order to obtain a lo-
,J,) when the scatterers are attractive. Figure 5(c) shows calized wave function by superposing particle in a box
the resultant current pattern (totai current density) ob- states, one would need several such states. Therefore
tamed by vectonally adding J, and JV. merely the propagating states (which in our case are the

It can be seen from the figures that a vortex has formed lowest two states) will not suffice to create the vortices:

in the left bottom corner of the figure. There are not one must include man:,' higher states all of which are

enough impurities to form strong and multiple vortices, evanescent.
To show the formation of strong multiple vortces, we Evanescent modes also have other serious effects, espe-

plotted the total current profile in the case of six impuri- cially when the tail of the mode around one impurity
ties, and the result is shown in Fig. 5'd). The vortices are does not decay sufficiently before the next impurity is
now very clear and strong. These vortices, however, are reached. It has been pointed out that in the case of at-
not necessarily centered around impurities, nor are they tractive impurities, a local buildup of evanescent modesI pinned by the impurities, occurs around the impu;ities, due to the formation of

The current pattern changes dramatically if we alter quasidonor states iquasibound states."' This buildup will
the impurity configuration. An example is shown in Fig. play an important role in the formation of residual resis-

5ie?, where we have kept the number of impurities the tivity dipoles discussed in Refs. I and 2. The study of
same 'six). but changed their positions. The vortices have such dipoles would, however, require a self-consistent
disappeared. This dependence on the configuration can treatment involving the simultaneous solution of the
only be the result of quantum interference effects (in- Schrodinger and Poisson equations. This is beyond the
terference between the scatterers). This indicates that the scope of the present work and is reserved for future inves-
vortices are caused by quantum interference. tigation.

In Fig. •lf• we show how the current pattern changes

% ,hen the scatterers are made repulsive instead of attrac- E. Conductance versus Fermi ener" in the diffusive regime
tive. For a few impurities iquasiballistic transport we see
novtic eIn Fig. S we show the conductance versus Fermi ener-
ties corresponding to the diffusive regime, we see some gy for a 1000-A-wide and 2.52-rim-long mesa with 60 im-

evidence of vortices forming. We wili discuss the current purities. The plots are for both attractive and repulsive
patterns in the diffusive regime later, impurities. lhe conductance steps are barely discernible.

since bO impurities are enough to seriously degrade the
C. Spatial distribution of Fermi carriers quantization.>ý As before, the attractive scatterers pro-

in thl quasiballistic regime duce dips in the conductance just before the opening of
In Figs. ta-oifl we plot the concentration of Fermi an additional channel because of the quasidonor states.

electrons *or the cases corresponding to Figs. 51a)-51`), However. there is an additional set of dips right after the
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FIG. 5. The two-dimensional current density profile ini the Ga.As mesa ,ia Fig. I. There are four attractive impurities whose poui

!nons coirc~cde with the centers of" the solid circles. The horizortal direction is, along the .t axis. The Fermi! energ-" 4•=4.8 rui.V so
'hat there are two p'-opagacing modes, i.e.. the lowest two suoo-ands are filled. (a) injection is from the firat subi, at .,nly. h) Injec.
t,'m is from the second subband. (cI Th~e resultant curient density due 'o injection from both subbands obtained by the vecto~r •dda- Hi
i~on of t;:e current densities in 'a) and )b). :d) The profile of the total c 'ent density in a mesa of" length 2780 A containing six impur-

tties 'all attractive• The vortices are now clear and strong. Cel The total current density profile in the same mesa .of (d ,} but for a
different impurity cuntiguration. The vortices do not appear lor this configuration. It) Prohile of the total current density in the strut.
ture of 1w,. w~th the sign of the impurity potential reverse ithe impurities are repulsive).I
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opening of another channcl. which has also been ob- pur.ties. The injection energy iFermi energy) is 2.3 meV.
served by other authors.'"' It was argued that this set The two plots are for attractive and repulsive impurities.
of dips is due to the fact that the longitudinal wave vector Vortices are now observed in both cases and their radii
of the newly opened subband is small, so that electrons are quite large. This shows that although the impunty
injected %,ith this wave vector suffer strong impurntv potentiaI is ,cry short range -,6-function potential), its
,,tattering into other subbands,. thereby decreasing the effect on the current distnbution is quite long range.

conductance. When there are a large number of impunties, the sign

F. Current rrofile in the diffusive regime of the impurity potential (i.e., whether attractive or
repulsive, appears to play little part in the formation of

In Figs. 91a) and 9bt, we s iow the total current profile vortices. Hence it appears that the vortices are noifor a section of the structure containing the first four mi- caused by quasidonor states which are associated only

oo oo

LIY
00 00i 'a) )b)

a b4

I 00 30

II

0I 30

-16 1.ho-dimeniioral profle ot the concentration oi Fermi carriers. ,-) correspond to the parameters and conditions of
-IS. -. .-- , ,
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with attractive impurities: however, the donor states may
have an elfect on the x'oticc.., since the nature of the ,'or-

- ------------------------------------------- .. -r----- -tices certainly changes w hen the sign of the scattenng po-
S........................................................ tential is reversed. W e discuss quasidonor states and vor-

-cx formation in the next subsection.

................................................ ....... G . Q uasidonor states and vortices

--------- "---_---_------------ ------- -. To examine the relationship between the quasidonor

-.......- - - - -...... ....... ... . ....... states and vortex formation, we plotted the total current

density profiles for three different Fermi energies which
------ --------------------------------------------------- are above ,4.8 meV), below (4.3 meV). and at (4.7 meV)
....... -------------- ---.----------------------------- the quasidonor-state energy associated with the third sub- I

* ""band in a structure identical with that which gave the re-

suit of Fig. 5(c). The plots for Fermi energies of 4.3 and
4.7 meV are shown in Figs. 10(a) and 10ib), respectively.

(a) Comparing Figs. 5(c), 10(a), and 10(b), we find that the
vortices are not any more prominent when carriers are

-- • injected at the quasidonor-state energy -47 meV) than

; .when they are injected at energies above or below the

.d ,onor-state energy. Therefore. the vortices do not seem
•- to be assoziated with donor states. even thouern the donor

.taies ma\ ha\,e an effect on them.
When the injection of electrons is at a quasidonor-state

energy, evanescent states build up around the impuri-
"".' ties: and therefore the Fermi carrier concentration

-" I shows large spikes at the impurity locations. These
L ..c spikes are certainly the result of ciectroti ;apture into

bound states around attractive impurities, but they are
not in any way associated with vortices. Hence it appears

00 that the vortices are caused by quantum-mechanical in-

b terference effects and require the presence of evanescent
modes, but they are not the result of quasidonor states.

FIG. ) ,lots in the absence of evanescent modes for the This is further confirmed by the fact that they show up i
,iructure of Figs. 5'ci and h.c!. a) Profile of the total current even when the scatterers are repulsive iFig 50fl] v hen
Jcnsli; -b' the concentration profile ir Fermi electrons. there are no quasidonor states at all.

- I - ,. rcflUIM e ni'-1ur'iic'

"\"a�" uicirep r Ie npuiru ic

0 ( .0 I I
1 i

(xi ($1

Fermi Energy E,.ineV 3
HI6. S The two-terminal linear-response conductonce vs Fermi energy for a 2.52-tcm-long mesa of width 1000 A having W impur-

ities randonlv distirMCd - Transport is now di1fusive instead ofquasiballistic.
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FIG. 9. Profile of the total rurrent density in the mcsa of Fig. (b)
8 ploted for a section containing the first four impurities. The FIG. 10. Profile of the total current density in the structure

injecticn energy iFermi ciergy) is 2.4 meV. taw For attractive of Fig. 5(c with the Fermi energy slightly altered while keeping
impurities; ,b) for repulsive impurities. the number of propagating modes the same. ia) Eý =4.3 meV

,below the quasidonor level splitting off from the third sub-
'-indl; (b) Et =4.7 meV 'the energy of the quasidonor level).

IV. CONCLUSION

In this pap.-r, we have examined the spatial distribu-
tions of cu rent density and Fermi carrier concentration rise to localized magnetic moments.' A magnetic field

around loc.lized elastic scatterers (impurities) in phase- applied perpendicular to the mesa will therefore either

coherent transport. We found that vortices occur in the quench or accentuate the vortices, depending on the

current foi both attractive and repulsive impurities, and direction of the field. Diffusive transport in the presence

their strength is typically larger for attractive impurities of a magnetic field has been treated in the past within the

(majority-carrier transport). These vortices are not scattering matrix formalism,' 5 but the treatment has ex-

caused by quasidonor states which form when the impuri- amined only terminal characteristics and not internal dis-

tie, are attractive: instead, they seem to be caused by tributions of current or carriers. It would be interesting

quantum-mechanical interference between the waves to examine what effect a magnetic field has on the two.

reflected multiply from impurities. We also showed that dimensional current and carrier-ccncentration profiles.

evanescent modes are necessary for the formation of This is presently being investigated and will be reported

these vorticei, and that the nature !or even occurrence, of in a future publication.
the vortices depends on the impurity configuration,
which is consistent with the Lonclusion that they are

caused by quantum-mechanical interference of waves ACKNOWI.EDGMENTS
reflected from the impurities.
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The spatial distributions of the current. Ferrm camers, electric field (due to space charges) and eicc-
trostatic potential in a di.ordered mesoscopic structure are calculated in tbe resence of arbitrary mag-
netic fields. These distributions are dl in elucidatinmg4" y Ya'uures otq'hqf jm magnetoutraport,
such as the formation of edge states a. h magnetc fieldand their near-.fect t ttivity, the evo-
lution of the integer quantum Hal' the creation of naIet-ac , amnd an impurity, tc
magnetic response of current voniILcs that fortn as a result of quantum4tterference between scatterers

and the walls of a quantum wire, the dependence of the quantuzed-conductancc steps in a backgated
quantum wire on an applied magnetic field, the behavior of residual-resstivity dipoles and the electro-
%ratic soace-charge potential in a magnetic field, the dependence of the sign of the magnetoresustance on
!e impurity configuration, etc. We examine the current. Fermi carrier concentrations, electric field. and

:b.mh cbmucal- and electrostanic-potcntal proiles associated with each of these phenomena and relate

them to the observed terminal charactenstics-....., t A, . tA.4. -

PACS numberls): 72.10.Fk, 72.20.Fr

L LrrRODUCTION all show quenching phenomena. We also found why the
sign of the magnetoresistance of a quantwn wire could

Many features of quantum magnetotransport in a depend on the position of a single impurity inside the I
mesoscopic structure can be understood by examining the wire. These, and the nature of other phenom s, become
spatial distributions of the current, potential, electric very clear when one examines the spatial patterns of
field, and Fermi carriers around elastic scatterers in the current, carrier concentration, and ele1ctrstatic,, m4#M,
presence of a magnetic field. In this paper, we have cal- chemical potentials. The spatial distributions are not
culated such spatial patterns from a fully microscopic only of great importance in understanding the origin and
quantum-mechanical formalism based on the Schr6dinger the detailed physics of many quantum magnetotranspM,4..
equation. These spatial, iistributions are of course. not phenomena. but they often determine the nature of sme." -

"precise ' in he-eýý of the Heisenberg uncertainty physical phenomena such as electromigration.I pnnciple wnich prohibits simultaneous definition of both This paper is organized as follows. In Sec-. II, we
_ the position and the momentum of an electron, instead briefly present the quantum-mechanicai theory used in .

they should be viewed as spatial distribution of computing the two-dimensional spatial distributions of
quantum-mechanical averages (or expected values) of the current, Fermi carrier concentration, potential, and inter-
corresponding quantities. These patte hs help in under- nal electric field profiles around localized scatteres in the
standing several quantum transport phenomena and pro- presence of a magnetic field. In Sec. I!I, we prasent the
vide direct visualization of the associated physics. For results for a disordered GaAs quantum wire coultining a
example, we show the spatial distribution of the current variable number of impurities. Wc show the spetl pat-
carried by edge states in a quantum wire at high magnetic terns associated with various magnetotransp hom-
field. The current patterns clearly show the high ena in both single-channeled and mnultichanmneid tram-
transmuittivity which is responsible for the quantization of port. Such spatial patterns were presented by an in the
Sthe Hall resistance in the quantum Hall regime. We also limit of coherent diffusive transport (in the abshmo of any
show how current circulates around an impurity when a magnetic field) earlier.' Others have preseted stch pat-
magnetic bound state forms. The recovery of the quanti- terns in the limit of coherent ballistic transpolt with no
zation of conductance steps in a dirty quantum wire by scattering whatsoever.2 To our knowledge, we are the
the application of a magnetic field is known to be associ- first to present such patterns in the coherent dtusive re-
ated with the suppression of backscattering, and the gime in the presence of a magnetic field.
current patteitis that we obtain show this very clearly.
The onset of the integer quantum Hall effect is caused by EL THEORY
the edges of a quantum wire becoming perfectly smooth
equipotencial surfacm and our chemical potential profiles The theory for our calculations of the currat and car-
demonstrate this strikingly. The magnep c response of tier demnty pattens w a quantum wire in the absenc of

Lcurrent vortices, electrostatic potential, and electric field a maguetic feld has been described in Rd. I. Here, we -
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coveat oniv ti-c basic features. We consider mesa ais *
,hown in Fig. which is single moded in the z direction
i.e.. -niv a sin~iie subband is occupied in trat airection).

but muitrnoded in the ydirection. - -
TheC S)cloain aVtlOiA descnbins electron trans-

port in tnis connned quasi-one-aimensional disordered
structure under a magnetic field is

p--e A ). t"• yb=Ex 1) FIG. 1. A quast-one-dimensmonal quantum ware containing a
"me random array of elastic scatterers. T~he structure is single mod-

ed in the z direction but multimoded in the y directiom The

,where p is the momentum operator. m"* is an isotropic magnetic field is applied in the z direction.

effective mass, and the potential energy V consists of two

-~a( - __ rny

Y)5• ~~~ ~ ~ ~ ~ ~ ~ -"-(y.).; =, k~)Vm.xy 2 ,2)) 0V (5)p)-'1 O

The first term gives the effect of !he confining potential in 1

.he y direction and the second term is due to impunties. with I being the magnetic length given by I =v'7'B.
We assume hardwal. boundary conditions in the y direc- The wave funcuon C(y) is found by solving the above

-ion and 6 potentials for the impunties so that we have equation numerically using a finite difference scheme as
described in Ref. 3. This method also gives the energy _

= v., X -X, )8(y Y: (3) dispersion relations E vs k. for the various hybrid mag-
SXY) - (-netoelectric subbands that anse from the confining effects

of the magnetic field and the confining potential in the , 3
direction. A set of computed energy dispersion relations

,khere s ms the total number of impurties in the structure are shown in Fig. 2. After calculating the energy disper-
ano the summation extends over all the impunties. The sion relations, we choose a certain energy E (which we

rosition of the Ath impunty is denoted by i x..y.. call the Fermi energy Er) and find the corresponding x-
.he wave function w& in the absence of impunties can directed wave vectors k, for various magnetoelectric sub-

-e written as bands (indexed by p) from the dispersion relations. These

wave vectors k and the wave functions 6 (y) are used to 1

(x,ym---e ""b(y) , (4) determine the total wave function ib,,,(x.y) (in the pres-

ence of impurities) for an electron injected with the Fermi
where k, is the x-directed wave vector and oiy) satisfies energy E, from the subband m in the left contact. The

tie eigenequation wave function is given by

- w.xy) piAmw,(x)exp(ikFXu iy)-rB.,P Lx~exp(iký X )$ (Y) (6

-- .- .:t, - = - - -- --•- - -- ______ - -6IVF!

Nhere the summation extends over both propagating and only have to evaluate the coefficients A.,,(x) and Bn,(x)

evanescent modes (the total number of modes considered to determine the wave function of Fermi electrons every.-
is M). The subscript -p indicates that the quantity cor- wher. If we know these coefftcients at any position i 1

responds to a wave function with an oppositely directed (xo,y) in the strcture, then the coefficients at any other
,elocity as compared to the one with a subscnpt p. position (Ui,y) can be found from

When the wave function is wntten in this form (i.e., •

cach mode is normalized by the square root of the corte- 3
-SD dinD group Velocity), all prupapuing modes at the tl12 1



-- I •eQuentlv, tre elements of the scattermin matrx cannot be

, ound bv the normal prescription of Ref. 1. The method

:or indmng these elements is described in the Appendix.
Once we have evaluated the scattenng matncs 'we

have found all the quantities that we need t eva!u are t e
-, ,' - -wave function of Fermi electrons everywhecre in the struc-

, ,:"ure. From this wave function. we calculate all quantities
7. ' : ." , ,:Of interest.

-- ,, In linear-response transport at low temperatures, only
I ,, .elections at the Fermi level carry a net current. There-

fore. the two-dimensional wave function tb,,(x,y) of elec-
........ trons in the ruth subband allows us to calculate the con-

tnbution of that subband to the two-cimensional current3 ----- - density. This is given by

"". . Vk_ ) ,tI'., X. 9)

I/T -- e A ,i', ,9)

I FIG. . Thc energy aisperion reatiuons tor the hybrid mang- SThe Fermi carrier concentration due to the contributiton
I G.'ceez ivrinrltostrtehbomg from (he ruth subband is defined by us as

'tetoeiectric suoban.as in a quantum wire of width 2000 A at a
-marnetic flux aensitv 4i 1 5 T. he soiid lines are the reults of nxi :bm(x,y)i 2  (10)
i exact numencat caicutations. whereas the broken line-s are the
:esuits or the smlciassicai Bohr-Sommerfeld quantization rule. The total current density is found by vectonally adding

the contributions from all propagating modes and the to- i-
tal Fermi carmer concentration is found by the scalar ad-

dition of the contributions from all propagatng modes.
S column vector of length M whose elements are B., 1tx 0 ), Note that no weighting by the density of states is nece-

B.., x,), B..,;,xo' ,B..txr , rn ýs a column vector of sary in the summauon since the wave functions have been

lengtin M, vhose elements are .4 ix, I, .42.,2 x, j, normalized by the square root of velocity which takes

..- .-.. ,,x, , and r. is aiso a column vector of care of the density of states.

:enztn Vt.. whose elements are B3,, x , ), Bpx,

i 3 1. " 3-w,x, . The coefficients t and J:o- J.,x,, ,

S- .. re eact Vt X M matrices and the square matrix in Ea. 1•sgtins1)

" - "ne 5o-calied transfer matrix for the section of the 'i7'"X.y 1y 1" ,T,

I • atructure oetween x = t, and x. propegaung

The :bove equation allows us to determine the Finally, we find the electrostatic space-charge potential

coerficients .*..x and B,,-c,/ , iand hence the wave V(x,y t from the relation 4o'.7

functionii at any arbitrary location x, if we know the
wave function (or the coefficients A.,#DIXot and B.,,xn] • tkImX'Yi'/• -.

at any one point x =x. in the device as well as the eV(x,y;- Pro"WPtin

transfer-matnx elemei•s. We do know the wave function • ¢ 1I - at the left contact (x =O). We assume that for injection Propagatrng

intc the mth mode, the wive function is given by scatter- (12)

ing statesý 'this is our boundary condition)

i where g, and p.2 are the chemical potentials in the two
-~ expt~k~x '.,,(yP contacts of the qiuntum wire, Yv,,,, is the wave function

corresponding to injection in mode m mwith energy At)
from the left contact, and 02,,, A the wave function for

m .x 'r O_•',• 8) injection in mode m iwith energy p2 from the right con-

=, I V 'Jut tact. The above equation is derived from the Poisson
equation and is valid only for (a) linear-response trans-

so :hat 4.,x =0-=-6, ;Kronecker delta) and port, tb) situations where the potential variation of:.

B.3,,x =o- '=R.,,R. Therefore, we can find the wave V(x,y) is smooth on the scale of the screening length.

function anywhere in the structure using Eqis. t6) and (7) ana (c) when the Fermu wavelength is considerably small-

I if we can ind the eiements of the appropriate scattenng er than the screening length. When these conditions are,

matrces in Eq. t7). In the absence of a magneuc field, not satisfied, the actual Poisson equauon-must be solved

_ these elements are fairly easy to find,1 but for nonzero simultaneouziy with the Schr6dinger equaltin, rather
mainezic fields. tbe wave functin of the vaniom Lob-. thofI 116i"M th- ..- =44 .IA-A ..- i' i-



-- lon e have to account for :arriers at ail energies, not yive magnetoresistance in this case. On the other hand. if

• ust the Fermi energy. This means that we must solve tne the impunty is close to one of the wails, then a magnetic
Schrdcinier eauation for ail energies wnicn is a more field will either bnne the eiectrons closer to the impunty
j-- emanaing task than the present approach of soiving .t or take it further away depenaing on the direction of the
only at the Fermi energy. Fortunately, in semiconduc- magnetic field. Therefore we can observe either positive
tors and in inear-response transport. the present ap- or negative magnetoresistance in that case (depending on

- proach may work well since space-charge effects are not the field direction) and the magnetoresistance will be
:remenoousiv important.' . , .- , asymmetrc in the magnetic field. This is a rather strik-

It was pointed out by Mch_"ba, L6 ..- .n , D-- that ing effect which might be observable in mesoscopic struc-
eV(x.y) is also what is actually measured at a chemIical tures at very low temperatures when impurity scattering *
potential prooe. In realty, the electrostatic potential is is the dominant mechanism for resistance.
the convolution of the chemical potential with a screen- In Figs. 4Wa) and 4(b), we have plotted the Fermi car-
i- ng function.' In the limit of strong screening (6 impun- rier concentration around the attractive and the repulsive *
ties), this screening function approaches a 6 function so I
that the electrostatic and chemical potential become:

- equivaient.
Once the eiectrostatic potential is determined, the cor-

responaing etecmic field is founa simply from

- ,.,.x. ; ...- 7Vx,' • I> -

In mne next section, we present the spatial distributions I
of the current. Fermi carrer concentration. electrostatic .. .. .....

or criemicaii notential. ana electric field patterns associ- ............ - .. .. ....

ated wit. vanous magnetotransport phenomena. I .....................

III. RESULTS
I

-. Spatial distributions around a single impurity
ia singie-canneled magnetotiramporr Local effet

In Figs. 3aw and 3Nb). we show the spatial distribution ; _.__ _I

of the current around a single scatterer placed in the mid-
die of a GaAs quantum wire in the absence of any mag-
netic tield. The two figures are for an attractive and a ,a)
repuisive scatterer, respectiveiy. The wire is 800 A long __
mnd '000 A wcie. The Fermi energy is 2.054 meV and
only a single subbano ,s occupied in both Y and z direc- . .......................
tio n s so th at tran sport is single channe led . T h ere is pro- - . . . . . . . . . . . . . . . . . . . . . . . ..- I-
nounced current )wding near 'he impunty when the---------------------------
impunty potentiad is attractive and diverges away from -------------------------------- -

the impunty when the impunity potential is repulsive. - -----------------

There are also two weak vortices above and below the
scatterer for an attractive impunty. If the impunty i3 po-
sitione i close to the edges of the wire instead of at the---------------------------
center, such a pronounced effect does not occur. There
are two reasons for this. First, the wave function dimin-
ishes in amplitude near the edges of the wire so that the - - - - -- - -- - --- - - - - - -- - -- - --

interaction between the electron and the impunty is ....... .....
weakened when the impurity :s closer to the wpq.ls
Second, the :onlnimg potentul of ihe wails plays a

greater role nearer the walls so that the cuffrent sees not I
only the impurity, but also the wails. As a result, the
current pattern is determined by the combined interac-

- tton of the impurity and the wall. (-)(b)
It is obvious that whien the impurity is right at the FIG. 3. The current distribution inside an 800---long and

center, the interaction between the impurity and the elec. 1000--wide- structure it. ie absence of any m- field. Ia) -
trons is strongest since the wave funcuon tof the lowest The imparity is atuscuve and there ts s3limk cMiiirrent crowd-
subband) peau at the center. A magneuc field will skew ing around the impurity wiuc is shownu bry thi slid cirle. (b)
the wave funcam away from the impurity and hen-ce de- The imp•rty is repulsive and the currnt detwa around the

.--rep the inteacmtion or smarternn. Thits wtU lead to a oumnit. TWi fin ve am. hriwo kical effinm of this imauwt notgan-
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I- cole formation in most cases. althougb it may sometimes
also enhance the dipole formation depending on the im-
Suritv connfeurauon. i.e.. ;he exact phase relationsnipsSbetween the mnterfenng waves. Therefore. even though
the dipole formation is a local effect in itself, the size and
onentation of the dipoles are significantly affected by
nonlocai Quantum interference effects.

In Figs. 5 ana 6. we nlot the electrostatic (or chetmcai)
potential and electric field profiles. For these figures, we
assume that LAI 2.056 meV and p7=2.052 meV. We do
not exactly see the characteristic electric field distribution
of a dipole since the "poles" of the dipole are not "isola-
ed" charges; they are "extended" charges. The plots are
presented for both attractive and repulsive scatterers.

_ _ IThey are very different when the impurity potential is at-
0 tractive (which corresponds to majonty career transport)

as opposed to the case when it is repulsive (minority car-
ner transport). in the case of attractive impurities. there
can be a building up of evanescent states around the im-
purities associated with the formation of quasi nound
donor states.,( These may help in dipole formation.

The application of a magnetic field causes dramatic
changes in the current. carrer concentration, electrostat.
ic potential, and electnc field profiles. We show these

IN
FIG. 4. The Fermi' carrier concentration profile for the struc- /

• ure of Fig. 3 in ttie absence of any magtnetic field. a) T'he tin. /
,-untv is attractive: 'hi the impurity is renuisive.

mpunt,, of Figs. 3(a) and 3lb) in the absence of any mag-
netc field, As eexpected, in the case of the attractive im-

._purity, we see a sharp spike iaccumulation of electrons)• .
around the impurity where the current crowding occurs.

The electrons are attracted to the impurity by electrostat-
_ic attracton. In the case of repulsive impurity, the con-
centraton is depleted where the impurity is positioned
because of electrostatic repulsion. In Fig. 4(a), we see
that there is a building up of electrons to the left of the
scatterer and a deficit to the right. fhis happens because
the impurity strongly reflects the incoming electrons
which build up to the left. Because of the excess negative
-charge on one side and a deficit on the other, we expect a
dipole to form. This is the residual-resistivity dipole as
discussed by Landauer.' We can contrast these figures
Swith the profes that were presented in Ref. I which con-
sidered only mutiple-impunty systems. When a large
number of impurities are placed inside the wire, the local
charge accumulation and depletion effect that causes a di.
pole to iorm is usually dim nished because of quantum-
mechanical miaefere=ce between waves reflected from the FIG. 5. The electrostatic (or chemica)l potmtai profile in-
varIous impuntrcs. This quantum-mechanical interfer- side tWe structure of Fig. 3 in the astesic of my maeuc field.
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-iffects for the single attractive impurity in Figs. 7a), ). ;he forward current. There is aiso, however, a small

-.c). and 7,d) which are to be comparea with Figs. -a, reverse-traveling current component close to the walls.

-,ai. f. ano d, respectively. This component was explained in Ref. 1,I which dealt m
In Fig. ":ai. we have plotted the current inside the wire with edge states n r'ailistic transport as opposed to

.n the presence of a magnetc flux density ot B = 2. 13 T. diffusive transport) as being due to the ciassical cyclotron

All ottier conoitions correspond to the case of Fig. aa. trajectones skipping orbits) having their velocities

- Comoanng with Fig. 3(a). we find that current crowding directed opposite to the net current flow adjacent to the

has disappeared and the two weak -vortices have been edges. At higher magnetic fields. this reverse component

quencned. The sample now no longer exhibits localized diminishes so that backscattenng is suppressed even

- magnetic moments due to the vortices. In addition, there more. In other words, the transmittivity of the edge -

is a significant reduction of the backscattered current states are very high at high magnetic fields. This agrees m
component. A similar reduction in backscattenng is ob- with Biittiker's picture of the integer quantum Hall

- served for a repulsive impurity also, except that it takes a effect, in which perfect transmission of edge states was

lower magnetic field to reduce the backscattenng by the invoked to explain quantization of the Hail resistance and 3
same amount. T[he current pattern in Fig. 7(a) clearly vanishing of the longitudinal resistance. U
shows mat edge states have ornned and carry the bulk of In Fig. 7(b), we show the concentration profile of the

Fermi carriers in the presence of a magnetic field of 2.18 3
T. The concentration pries up near an edge because of

the Lorentz force skewing the wave function towards
that cage. Note that there is no longer a buildup of elec-
trons to the left of the scatterer and a deficit to the right 3
since the buildup is due to reflection ibackscattering) and
this has diminished significantly. In fact, at high enough
Smagnetic fields. backscattering is always reduced. There- 3
fore, in general, residual-resistivity dipoles wil be des-

"- fro)r-c by an external magnetic field if it is of high enough
.. magnitude.

"In Fig. 8(a), we show the conductance of the structure -

I . of Fig. 3(a) versus the Fermi energy at a magnetic field of
* - 3.5 T. There is only one attractive impurity in the struc-

.... ture placed at the center. A pronounced dip in the con-
ductance is seen at an energy of 3.32 meV. At this ener-

gy, a magnetic bound state" forms around the impurity
which causes the transmission (and hence the conduc-
tance) to decrease sharply. This state forms at about the
same energy for a renuisive scatterer. The corresponding
current profile is shown in Fig. 8(b). We find that there is

ýa) only a small amount of net current traveling from one 3
contact to another when a magnetic bound state forms
and the bulk of the current circulates around the impun-

I ty. These magnetic bound states are quite different from
the quasi donor statesl0 which are also bound states giv-
ing rise to dips in the conductance characteristica. There

i are two major differences between magnetic bounti states
and quasi donor bound states. First, the former occurs

-, regardless of whether the impunty is attractive or repul-
sive, whereas the latter forms only when the impurity is
attractive. Second, the current patterns are very

different. In the case of magnetic bound states, thee

current circulates around the impurity but in the case of

I quasi donor states, no such circulating cunrent pattern
':needs to form.' Finally, the carrer concentskr profiles

are also quite different. In the case of magnetic bound
states, the concentration builds up around the impurity m
but right at the imptuity it drops sharply. This is shown

in Fig. 8(c). Although the carriers may accumulatc

b) around the impurity even in the cae of quasi donor state
formauon (owing to the buddup of evanesaent si=), the m

FIG. 6. The eecmc field rrofile inside the structure of Fig. 3 effect is much len pronouncid. Finally, Fig. 8(d) shows
S.. . . -1a,' -"---- the electrostatic-potentud profile when a magnetic bound



I R. Spatial dismbutions for muitiple impurities '-A and the Fermi energy is Z.41 meV. There are two
:n sitle-clinneled transpon: ,'oniocal itrfect . ortices in the current pattern. They have opposite cir-3,:ulations ano produce antiparailel locaiized magnetic

in ,tructures where multiple impurities are present, moments. As we turn on a magnetic field (see Fig. 9(b)],
.ortices torm in the current pattern as a resuit of quan- we see immediate quencfinig ot one vortex accompanied
• urn nterference between waves redected ftrm the walls by a slight reduction in the strength of the other. This

dnd various impunties.' These vortices are a striking aft. different behavior for the two vortices can be explained
:rmath of noniocality in phase-conerent quantum trans- by the fact that for one vortex, the Lorentz force tends to
-ort. They are not centered around impurities since they produce a circulation in a sense opposite to that of theI - are a consequence of nonlocal effects, and their positions, vortex. Consequently, even a very low field is sufficient to
is weil as strengths, depend on the impunty quench this vortex. The resultant change in the quantum
,onriguration. In Fig. 9(a), we show the current distribu- interference between the scatterers causes the other vor-

i - ion in a sample with two impurities without any magnet- tex to weaken as well, even though it has a circulation
-ctheid present. The structure is the same as that in Figs. pattern in the same direction as that produced by the

. .......... ... .

I - -_- -_ - ----- -........ -- --

I..

b)

!I -I _ __ _

I

I-i

.) (d) L

- FIG.-. The spatial distnbutions in the structure of Fig. 3 in a magnetic flux density ofr218 T. The impurity isamaCttice (a)Tbe
* .irrent distnbution. The bulk of the forward current is carried by edge state.. The s&madl backicatrwed compaMIM the WaM=
,was explained in Ref. 9. This figure should be compared with Fig. 3(al. Note that the local effact ofthe impuMrityPI1lUUan id.Ited by the magcetic fiekld (b) The Femtu carrer concenLrahiou diatnbuncei whsch peainea r an wemp becam _'
skewvng the wave function towards that edge. ic[ The electirinum (or chemal) pot•ntial pro"li iW
surfaces-a. along one wadil and , along the othra. The iongwadiml four-4twml ra tlhat
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Lorentz force. As the magnetic field is increased slightly, Jie modalitv e.. only intrasubband scatering is allowed
he circulation of one vortex completely reverses while is opposed to intersubbana Scatter.ngi. In muitichan-

-he other weakers urther. This is seen in Fiz. 9ic). At :ieied conduction, there are more nrooagating modes -
,erv high fields, the vortices completely disappear and ivailable for scattenng so that both intrasubband and in-
,he current ts carred by the cage states from one termr- -ersubband scattenng are allowed. This increases the to-
ial to the other. tal scattenng probability and the current vortices that

t.orm require a larger magnetic field to be quenched.
C. Multachanneied transport There are also more subtle effects. For iniection from the

second subband. the vortices that form are actually
-- The previous results were for single-channeled trans- strengthened by a magnetic field. The net magnetic mo-

port in which an electron can scatter into only one propa- ment of the structure is increased by an external magnet.
gating mode isubbandi. Some of the features observed in :c field so that the response is "paramagnetic." This is in

- the single-channel case may really be consequences of sin- contrast with the situation seen in single-channeled trans-

7i

II
Ferm i Energy(meV .. ... . . .- -

b)

TI

!_ ! .-I

(C)

FIG. 8. Results for the formauon of a magnetic bound state. ta) The conductame vs Ferrm energy for the structur of Fig. 3 con-
t21ing an attraicuve tmpunty. A magneuc flux densty of 3.5 T h&3 been apphed The dip in the conductance ocnnn at the e at-
which a magnewc ootnd state forms (b) The current distnbution during the foumbaog of a bound state. The currme cirul
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-I-ort ,Fies. i in wnicn the response was 'd.iamagnetic. at high mainetic fields owing to the formation of edge
'n FiR. 10, 'A•e nave piottea the conductance %ersus states with hiah transmittivitv.' The quantization tor

Fermi ener.y oI a GaAs quantum wire of length '00 A "ne hisr- stevs is generally worse and does not improve

,nci width :O00 A containing four attractive impurities. .CrV much with increasing magnetic field since the

The conouciance snows quantized steps associatea with :ransmitivities of the higher subbands are always lower.

,ubbanca filling." The results are plotted for magnetic The real-space edge state trajectories at the two edges

:lux ciensities oi B =0 and 3.5 T. The quantization of the corresponding to the higher subbands are spatialy closer

:onacuctance steps is quite poor in the absence ot a mag- to one another than those corresponding to the lower

netic held because of significant backscattening from the subbands. This causes increased coupling between the

impurity. "' When a magnetic field of 3.5 T is turned higher subband edge states and hence increase back-
on. the steps become wider and the lowest steps become scattering.
much smoother. T'he steps become wider since the sub- In Figs. I Ila), I I b), and I I(c, we plot the current dis-

band separation in energy increases with magnetic field tributions around a single attractive impurity when two

and the widths oi the steps are equal to these separations. subbands are occupied. The three figures are the current

- In addition, the lowest steps become smoother since the patterns due to injection from the first subband, the

:ransmissbun probabiiities of the lowest subbanas increase second subband, and the resultant current pattern. re-

-- _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ .. .. ..

. . . . . . . . . . - - --- -:-:-:- II-I

S. . . . . . . . .. .- . . . . . . . . ..I. . .. . . . .

.......... .......... - -- -...........

I:I
iih

-.... ..........-.....--........

S .. . . .

. . .-I1 -, - - - - - -

FIG. 9 T-he sausla distnbuuons for a 900-A-long and I(OU-•.-wide structure containin muluple impurite. i(a The current

profile in zero magactic field showing the formauon of two sutng vortioe due to qusntm •in •erffce between the scrtm and
* ... .. ,.. -_ _ . .L_ b.- ,-- . " .I . VfI11lI? " i" f'1lll.dlll~qf h ilnec



_4ect. The voit_,2e difference netween inc two edges Is
-- - he Hail voltage drop. This figure Should be contrasted

7with Fiz. 8(d) which shows the potential profile whlen a 3
magnetic bound state forms. In that case. the edges are

7 no longer equipotentiai surfaces ind the quantum Hall
effect is not observed. It is well known that if the radius
of the magnetic bound state is equal to or larger than the

- width of the wire, then the edges states at the twc edges
_______ * of the wire are coupled by the bound state and electrons

can resonantly tunnel from one edge to the other resuilt-
Fertmner~\eV *~ in(' in backscattering. This destroys the quantum Hall

ehect as predicted by Jain and Kivelsoni9 and later
Ferm Enrv_ýmeVverified by Lee. McLennan. and Datta. We also observe *

the same effect in Fig. 8(d).
FIG. 10. Recoverv -F conductance ouantization in a dlisor-

l.ered structure tv a -neUc field. The structure is 900 A long IV, CONCLUSION-
ina :000 A witie an-a :ontains two attractiN e m7n~unites. In the f
,osence oi a M321retic neid. the ouantization is ajIe noor rTie In this paper, we have plotted the current. Fermi car- U
.1ansmnssion ýi .ýe !owest suobpna is .ery smaui so inat tih -.er concentration. electrostatic-ootential. and electiric

- etent cit tne ~west connuctance teo is aiso %cry smail. .- -eld protiles associated witn ,arious maenetotransport
n1anertic diux Icnsitv nt '.5 T improves the quantization of the -phenomena. These results are S.-ry nhelpful in elucidating
-)West Steps siamficantiv and also wiccens tne stcvs. The quanti- many features of these effects.
iation of the hf-iener tet .) is always worse than inat of the'lower
'nei bec3uSe Of :.Ae reiativeiv iower !ransmission oi the higher
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!s mccateu. Consequentiv. electrons from the second
.ubband do not intelact with the i-npunty andi therefore APPENDIX: DERIVA -)N OF

,here is hardly any backscattering. A magnetic field ot I THE SCATTERING Nl FOR
T Kews the Nave function of- the second suoband and x SINGLE LNIPURIT. AE
2,auses the etectrons traM this s~ubhari to interact with PRE-SENCE OF A NIAGNETIC FIELD
;he impurity. This increases backscattering and hence weI
i~pect .to see positive miagnricoresistance in this case. [he In this Appendix, we derive the scatteLing matrix

~u .re~t Dronile for the second subband at a field of I T is describing electron propagation across an elastic 6

nfuwn ifl Fig. liji. rhcre is a large baci~sc~attered corn- scatterer (iirpuntyi in tne presence of an arbitrary mag-3
-pontent in the current clearly visible rit the upper section netic field. The reai-space matching method discussed in

of the device which was not present when the magnetic Ref. 21 is employed. We take a section through the ins-

!icld was absent. Of course, at high enough magnetic purity across the width of the structure iY directi.on) an,
fihelds, edge states form and backscattering is reduced, break this section into a number of mesn points alsio tgFZJ

width. Then, we enforce continuity of the w~ave function

L). The ioumerf quantumn A" effect and its first denvative across the se~cton. X .
(fwe assume the impurity to be located at position3

0,~Y, then the wave function for the incorning viave from
!n F~igs. :Y and 12(b), we sudjw the electrostaticý- the left side of the impurity can be written as

potential pioriles in a 900-A-long and 1000-A-wide qua~n-
tumt wire- wi.n two imptirities at magnetic fields oft) and f(X. YlIZix,y. Y) V x, 0

3~onily oije subband is occupied. We assume that
S2.413 me I and o2:= 2.408 meV. Figures 12(o and 4

-- 12[d) show the corresponding electric field profiles. Note lX.i t
p ,t 0

,hat in the presence of the- magnetic field, both edge-ý of -

the wire become !xtraordinanly smooth equtpotentiai where
-. uriiaccs. Ci~nszquently, if we att~ached two vo~tage

probes at r'iy vi the edges, they will measure a relative /~ xy-xa~~,i\
Soltbge difl'tetice of zero and hence the four-terminal
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" "-- oerfcient from the ./th mode to ine :[h mnocle. where the individual 6iements -,r, etc.. are themselves
For trie inconiing wave irom the nrwht sice oi the im- M X× M matrices and M4 is the total number of modes

-,univ. .he wave function can re wrmtten as 'propagating pius evanescenti.
We now enforce the continuity of the wave function

• " ,, .x,y) .- -' and its first derivative at all mesh points. This allows to
write the set of real-space mode-matching equations 'or
the incoming wave from the left

* * , •f7*.(O9i*.'O p=• ~y ,, i'or all possible ,

The scattenng matrix across the impurity is defined as

3.x "x' O i

=----------.-------,O-=----

- -.- - - - - - -' - - -

--- -.-------

--------------- - - - ---------------------------------

- - - - - -- - - - - - - --. .--- *. .. -- -

- -...- -- - - - - --- -

-~ ~~~~~~~~~~~~~~~ -~ia - -tr-m--u- - -4e~hnee codcto in a -tutr o- -egi -0 -a- wi- -00 A w- -n -t

u -r i-- i b . . ..o.l. ..c. ..ro.m a. ..c - -.b u -

zucu. .. t.... .. .. ..u..s k~e twsh (i m rtvb h • m ... u .. . .id .th • i. . .- .1.i. - -

~~ . . . . . . -,- . . . . .- J

- -- -'d - - - -
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F ~ ~ ~ ~~ - - -- -~rrn lsrt- " - . --:io Ir- -h -o¢l -lbIl on- -t -er -tfei -~ld -, -uT~l -lt'b ; -

,,- - •li - h -,cn -u) - -t -er -a n~i -ed -o -•t -i~l bn l -s o-er~ -ic -h -e om -ud -= -
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• • ; ; ;hi l -- ' DDC, do s no ;
. -, . i r,'r du]f

wvhcre v, is the ath mcsn point along the v direction. :1 I
At the location of the imruritv, the derivative ot the V V.

wave function is discontinuous by a L functon. else-
where, it is continuous. Exact treatment of this condition rl - ____I_

is not possible. We average the quantities over the inter. U _.
vat containing the impurity by multiplying e~ery equa- ik, m'0,
tion by some averaging function and ,-en integrating :.--'-- /. - - I

over the interval. For our case, we simiply choose the V V. fA' v. I
averaging function as I-k .n

r2,= - - -. ,AYO0.OS I Vvu_., ' . '_ " "
Sn- " •"'-~ .I I

y ,, - i -' "I

Substituting for w. and :,, the above equations may be . ,
rewrntten in matnx notation as V, -k _ . ,.d. - I. I +4 .1 V"10

V V.

lit rl, 1 1' ~
'2 .2

where =0 lyi:YVO).

1 r

F ,

--- -o 1 Ob " " ' " " ' • T '

S , , .- 0 •I

•c)(d) 1 -

FitG. 2EIec_.mzusumti. 'r chemuica) po'kznuai £n elt.tnc fie14 pro•k ingaldl £i s•ac withl two atrmuv amqtIm., Ia) Po- I



In a similar manner, the equations for the transmission Current conservation requires that the scattering matrix
- and reflection coetficients for the incoming waves from be unitarv ana we must check tor it at all impurity loca-

the right can be derived, tions. The composite scattenne matrix for the whole
structure can be round by cascading the individual

',I' C' scattering matrces according to the law of composition,,'of scattering matrices:"

where S..

- !' = .... where . is the total number of impurities.S"V/_. A few statements about the numerics may be

worthwhile. At high magnetic fields, the coefficient ma-

r 1:/ = , j trix required for finding the values of t aud; becomes
V,/. nearly singular and hence spa aanfnien.ý=Vechttques

ik. in" I are needed for matrix inversion. l-t'owever, we found that
I(b,, •.Y 1.o 1 the real-snace matching technique is always numerically

-r " much better behaved than the momentum space mode-

matching methods followed in Ref. 24. In fact, the real-
-K = . ,"space matching method ensures that current continuity is

--- - -- preserved to a much better approximation than momen-
V a. turn space mode-matching methods.

- I. From the set of equations aboveit is easy to show that
S• ,the current across the 6 scatterer is conserved and that

V/u, the scattenng matnx is mathematicaly unitary. To do

ithis we take the continuity equation and the derivative
equations at any point, multiply the right side and the left

i V a hfVre side together, and then sum them over all points. ThisiFor a free propagating region of length x which con- imdaeysostecretcniut.W eto
Sizmdaeyshows the current continuity. We mention

mtas nc impurity, we can wnte down the expressions for that the following relationships are useful in deriving thetransmtssion and reflection coefficient matrices directly as current continuity:

t .,= expttk~x ;6j, F - F i . + F - V I y O j ?=• k ,
. .'___ f .k. Kk .. ... j-.

:.= exp ik x, ., . ". Yw,, " " " I .
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Numerical calculation of hybrid magneto-electric states in an eiectron
waveguide

S. Chaudhun and S. Bandyopadhyay
Deparimnt of Electrical Engineering, Lniversi.r of Notre Dame, Notre Dame. Indiana 46556

(Received 30 October 1991: accepted for publication 6 December 1991)

We have performed a numerical calculation of the energy dispersion relation of hybrid
magneto-electric states (both propagating and evanescent) in an electron waveguwde subjected
to a magnetic field. Our results are considerably different from those obtained through
the Bohr-Sommerfield quanntzation condition. We have also calculated the density of the
magneto-electric states as a function of energy and the velocity versus energy
relationships. Finally, we show how the wavefunctions of these states evolve with increasing
magnetic field from particle in a box states to edge states. These results are useful in
the analysis of numerous recent magnetotransport experiments performed in electron
waveguides.

Electron waveguides (quasi-one-dimensional wires in A = ( - By,0,0), (3)
which carrer transport is partially ballistic) has been the
focus of many recent theoretical and experimental where B is the z directed magnetic flux density.

investigations.' Of particular interest in these structures is The wave function 0' can be written as

the nature of magneto-electric states that are formed under k(x,y) - ek'-b(y), (4)
an applied transverse magnetic field. These states are im-

portant in undemtanding numerous magnetotransport ex- where k, is the x directed wave vector and 6(y) satisfies
penments such as the conductance oscillations of quasi- the eigenequation
one-dimensional electron gases in a magnetic field, 3 the
integer quantum Hall effect.' etc. In the past, magnetoelec- (Y) 2m* (y y

tric subbands and their wave functions were calculated in - - -'-" Ed'(y)-, (y) + 2Thk#(y)
an approximate manner using analytical functions such as
Weber or hypergeometric functions.5 In this paper, we
have calculated the wave function, the energy dispersion with I being the magnetic length given by 1 = Nf/eB. To
,elation, the velocity versus energy relationships, and the find the wave function 6(y) of the magneto-electric states,
density of these states starting from the Schrbdinger equa- we have to solve the above equation subject to the bound-
tion. Our calculation is described below. ary conditions

We consider an electron waveguide (a quasi-one-di-
mensional structure) as shown in Fig. I. The magnetic 'b(y = d) d(y = -d) = 0 (6)

field is directed along the z direction along which the con- which follow from Eq. (2).
finement is complete in that only one transverse subband is In order to find the energy dispersion relation £ vs
uccup;ed. The Schrodinger equation describing electrons in for the magneto-electric states, we have to find the values
this structure is of the wave vector k, for a given energy E satisfying Eqs.

(p -- eA) 2  (5) and (6). We then repeat this for various values of E to"(m tl(x.y) -- V(yK•(xy) = Et,(xy), I1) obtain the energy dispersion relation. Unfortunately, this is
"2m* not straightforward since Eq. (5) is not an eigenequation

where A is the magnetic vector potential. m* is the elec- in k, for a given E due to the fact that it is nonlinear in kr

tron's effective mass, and V(y) is the electric confining
potential in they direction. The simultaneous presence of a
magnetic potetial and an electric potential hybridizes the
electronic states causing them to be magneto-electric
states.

The potential V(y) is chosen to be consistent with
hardwall boundary conditions y

V(y) =0 iyi~d
= .4 ýy I >d. (2)

where 2d is the width of the structure in the y direction. FIG I. An electron vavegwde subjected to a magetic field a&ong the z

We choose the Landau gauge axis.
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FIG. 2. Energy d .peion E vs k2 of magneto-electric subbands 0n a . , , I
wavegwude subjected to a mst.ec field. The wavegwde tranverse width -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

is 100 A and the wac field is I TThe Fermi energy is taken io 7 (b) k (1/nm)
meV. If the subband bottoms are below the Fermi energy, the states are I
propagaung states and have rel wave vectors: otherwise they are evanes- '0
cent states and have imaginary or complex wavevectors. For the param- I " , '

\; "- • \' ' / .' ,'• I,• / :eters (well width and magnetic field) chosen, the lowest evanescent states 18 , ,

have purely umaginary wave vectors. The evanescent states are shown E, Iwith negauve curvatures. The energy separation between the subband 16 u \ '\ /
bottoms depends on the magneuc field as well as the width of the wave- 1. . . ,

.4I :, - / ' :

We therefore have to convert Eq. (5) into an eigenequa- t 10tion in k,, using the following transformation. . ,"'--•-•' , : I•
8 S . / I

Let /
!() = k4(y) () 6

I / I i
Equation (5) can now be recast as 4 - /

0 1

a2 2m 
0 

4 
, (8) 0

04 33 32 .01 0 0o1 02 ")3 04

We discretize Eq. (8) within a finite difference scheme lb) k (I nmo

breaking the y domain into N grid points where N is some FIG. 3. Energy dispersoi reiations (for the propagating states only) I
suitably large integer. We can now readily solve for N obtained from our results (solid curves) and the Bohr-dSomme feldquan-

different k, e igenvalues (k•, k2,...k,) for any given energy tzation rule (broken curves). (a) The waveguide w•ith is 1000k and the
E and find the corresponding eigenvectors which give the magneuc field is I T; (b) the waveguide width is 2000 A and the magnetiM
wave function 4$,(y). Each value of n corresponds to a field is 1.5

magneto-electric subband. This gives us the energy E ver-
sus the k' ,n = 1,2,3.... N) relation, or the dispersion re-
lation for N subbands. We vary E up to an arbitrary max- observe, say, the magnetostatic Aharonov-Bohm effect
imum which we call the "Fermi energy" E, If the bottom with the evanescent states but not the electrostatic
of a subband is above E£ then the corresponding state is an Aharonov-Bohm effect.
evanesmt state otherwise, it is a propagating state. Eva- In Fig. 2 we show the energy dispersion relations in-
nescent states have imaginary or complex wave vectors (k. cluding both propagating and evanescent states. In Figs.
values) where-4 propagating states have real k. values. It is 3(a) and 3(b) we compare the dispersion relations of the
interes tng to note that while in the absence of a magnetic propagating states with those obtained from the Bohr- I
field evanescent states can only have imaginary wave vec- Sommerfield quantization rule. 6'7 We find zhat there is a
tors, in the presence of a magnetic field they can have both significant difference between the two results. In Fig. 4, we
imaginary and comple" wave vectors. The states with corn- show the velocity versus energy relations for different sub-
plex wave vectors can interfere since their wave functions bands. The velocity in the nth subband is defined as
are complex and they have nonzero current densities asso- v. /4)(aEldk•). In Fig. 5, we show the density of
ciated with them enw though they am evawsexac . It is states versus energy where the density of states is defined as
interesting to note that because of this feature one could Z1(41hv.)O(E,. - E0.) ,,th 0 being the Heaviside step
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FIG. 4. Velocity vs energy relauonships for the mAgpeto-electnc states in
a wavegwtde width of i000 A and a magnetic field of I T.

function and 4 the energy at the bottom of the nth sub-
band. The summation is carned out over the propagating
states only. The density of magnetoelectric states is useful
in calculating the optical absorption spectra of a quantum
wire subjected to a magnetic field, or the scattering rates
for hot electrons in the presence of a magnetic field, and
, anous other quantities.

Finally, in Figs. 6(a), 6(b), and 6(c), we show how - --=>-
the probability density 16(y) I of the lowest subband at
the energy E = EF evolves with increasing magnetic field.
At zero magnetic field, the state is a particle in a box state,
whereas at high magnetic fields, it peaks near the edges of
the waveguide and becomes an edge state. For a given sign
of the wave vector k1, the probability density peaks near (C)

one of the edges of the waveguide whereas for the opposite
sign of kr, it will peak near the opposite edge. This behav-
.or can be understood as skewing of the wavefunction to- FIG. 6. Probability density it. the lowest magneto.electnc subbend at the
wards one of the edges due to the Lorentz force applied on Fenmi energy of 17 meV. The waveguide width is 1000 A. (a) The mag-

the electrons. netic field is zero: (b) the magnetic field is I T; (c) the maguctic field is

In conclusion, we have shown in this paper the nature o0 T.

of magneto-electinc states in an electron waveguide. These
states have been invoked to explain several experiments
and phenomena such as magnetoconductance oscillations believe that our results will be useful in the analysis of
in electron waveguides and the quantum Hall effect. We these and other expenments dealing with magneto-electnc

states.
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A Monte Carlo Study of
Correlations Between

Impurity Scattering Events
in a Two dimensional Electron Gas

Giving Rise to
Inhomogeneous Magnetoresistance

N.. T'latig atlt S. [3actV,)(% lIAdIYhay
Di,'1 arttutet oif Ehcrtrickl EngmlIerlng

Iniver•ittv of Notre Dante
Norre Dante. Indiana 46-536

.R~' ] 3 0 ._ki kd tC LIgii 19911

In a recent experiment. the low tempcrature linear response magnetortesstance ot an
InGaAs quantum well paltemed into a Hall bar exhibited .tnkingly different behavior
wheit measured between different voltage probes of the Hall bar. This anomvly was
explained as bein,. c:au.,d by '.ubtle correlations between impunty scanenng events tin
the "res;ence oft a ma.'neuc fle!dlp which are beyond Fermi's Golden Rule. In this caper.
we present a Monte iCario .imulaiion of electron iransport in which these corrlations
arc cavturncd by retaimng intormation about the impunty configuration. i.e. tne precise
locations of the scaitenng centers within the sample. The results of the calculation agree
qualitautvely Ajmi ie experimental data.

Introduction itons between impunty scattenng events that depend on
the precise locations o0 the impunrties (the impurity con-

in a recent exLrtrinlenti. the magnetorcsi.stanec• of an figuration). Sincc the impurity configuration is different in
InGaAs quantum well patterned into a Hall bar was mca- different regions of a sample. one would expect to ve dif-
sured at a temperature of 4 2 K under low bia-s (-- 4 IV). ferent magnetoresistance in different %ample regions. This
The mag"netoresistance exhibited different behavior when can explain the expenmental observations. In Fig. 2 we
measured between different voltage probes of the Hall bar elucidate the nature of these correlations by showing that
and ever. showed different signs near zero magnetic field, a magnetic field can either enhance backscattering (pos-
The test structure and the data are shown in Fig. 1. tive magnetoresistance) or reduce backscattenng (nega-

The observation of radically different magr oresis- live magnetoresisLance) depending on how the scattenngs
tance behavior in the samt sample depending on the lo- between the diffecnrt impunties are correlated. Such in
c.-ation'. of ihe measunng probes (i.e wnere the sample is effect is not masked by ensemble averaging over elec-
pmhed) is a rqther unusual occurence since all well-known urn trajectones tw by anisorropic inelastic scattenng events
magnetnreqsitance mechanisms arc hn•i,,qenenwzv effects time varying perturbations) such as elecrron-electrun %cat-
ihat cannot cause different behavior in different regions tering which do not perturb the trajectones significantly.
n"f a sample. However. it is possible to explain these A similar mechanism for magnetornrsistance was proposed
fesult� if the magnetorcs~stance is influenced by correla- by Beenakker and van Houten is narrow samples.

0749-6036,92/01 0099 - 04 S02.00/C i 1992 Academic Press Limite•d
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(;,aAj cap (400r A) 1S c.eki

n AGaAs 400 A) A2E16cmU3

i-V~ACAm spa-4v ($0 A) iLiS/cmL.3

.H * . . . . . . . . . . '. . . . . . . . . .... =. .,

ii~~~~6A me". ,ttIcw.

S. I GaAs subs"vur, 2

400) towa'do 4110).

•csstatcd by the tJc( i,,i at ow nias and low temper-

Z ature, it is only the election,; at the Fermi energy that

can-' current. The electrn, are acted on by the Lorentz

J_- .___force ,'r x H wheie H i, ine magneuc flux density. The

-".rentz force, impurity scattering ano wartnenng from the
boundanes of the 'ample are tne only three mechanisms
that affect the direction of the c:ectron velocity within the
simulation domain and detcrinine the classical trajectories.

. - -- _ ....--........ The only other scattenng mechanism that could be consid-

-0 5 0 0. 5 1 5 ered is elecLton-electron ..-attenng (although it is known
Magnetic flux density B iTeslai to be ten times weaker than impurity scattcnng from ex-

perimental data). However. ciecrron-electron scattenrg is
SFig. I. The experimental smucture used in Ref I (a) very anisotmpic and favors smail anple scattering. For this

The quantum well of lnGaAs. -b) the Hall har ,howing reason. it is not at all effec'i,-e !n deflecting the trajectones
the current and voltage contacts, and tci the expeonmen- significantly.
ial magnertoresistance curves (the resistance I?_ ,, .tands I
:,wr ie four-terrminal reistance measured by passing cur-
rent hetween contacts m' and Y.while measuring %oltagc
heiween contacts 4- and H

In this paper. we present a simple Monte Carlo modelI
of electron transpon in a confined two-dimensional eLec-
timn gas to study the correlanons between impurity ,cat- __,

tenng events in the presence of a magnetic field. li- 0m

puntsy scatteiring is the only scattering mechanism that is 0

treated since it is overwhelmingly dominant over a;l other
scattenng mechanisms under the expenmental conditions.
The correlations betweein impurity scattenng events are ac-
counted for by keeping track cf the exact locations of the (a) ) m
impurities, i.e. the precise coordinates at which the scat- I
tenng events take place. In the next section. we describe * Fig 2. Possible electron t-aJctones inside a disor

our mdel. dekrd sample in the absence tupper figure) and presence
lower figure i of a magnetic field. The impurities are de-.

The Monte Carlo Model noted by %haded circles: iai for this impurity configuration
the magnetic field suppresses backscattenng and enhances

In the Monte Carlo simulation. electircn are injected tranimission so that the resistance decTeases and the mag-
into the simulanon cdomain with the Fermi velocity r'f at nctorsistance is negative, Ib) for this configuration the
arbitrary angles. The in)ectons at Ferm, -,elocity are ne- opposite happces to make the magneloresistance positive.

I
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During the simulation, the electron position is sampled • S

recu!arly with a penod that is much smaller than the mean .

time between collisions estimated from the measured mo-
biliry. During each sampling, the direction of the Lorentz
force is updated. If during a sampling, the electron is found 0.73 1
within a s•Teening distance from an impun~v. it is made to .7

catter. Since the scattering is elastic. it does not change
the magnitude of the electron's velocity., but it changes the
dirccuon. The scantering angle is determined within the
framework of Ferrii's Golden Rule. i.e the anisntropy of 0 I
the rcattering is explicitly taken into account. 0 o :1 3 : 0 a 0 4

The impurity locations (impurity configuration) are Ma,,netic field 1Tesla1
gencrated by t.xo independent random number cenerators •Fig. 4 Transmission probability, versus magnetic fiux"~hat •lie the •€- ,,,,nd v-coo<'rdihnates. The as.erage uistance

Mat 11, theX- nd -coodintc%.Thea~cagc lltncc density. The thrre traces are tor inrce different impurity
bcrvteen the impurities is iainainned at the mean-free-path de nsi The th e br i dfferentm r
,aiculated from the measured mobility and carmer concen- conhgurations. Note that the 'loes of the curves near
tration ithe latter determines the Fermi velocity). zero magnetic field arm different tordifferent configurations

Boundary icattering is treated as follows. If an elec- which means that the low-neld magnetoresistance can be

tiron collides with a boundary of the sample, it is made positive or negative depending on the configuranon.

zo undergo -ither specular reflection (angle of incidence
is equal to angle of reflection) or diffuse reflection (angle From the Monte Carlo simulauton. we estimate the clas-
of retlection is arbitrary). Again. these elastic collisions sical transmimsion probabilities of electrons through the
do not change the magnitude of the electron's velocity. simulation domain at various values of the magnetic field.
but change the direction depending on whether specular or The tran;mi•sion pmhability is simply the fraction of lec-
diffuie refiection is chosen. The boundaries are placed at tmn% in)ected at the left edge of the simulation domain (left
locations corresponding to the physical dimensions of the contact of the sample) that emerge through the right edge
,ýarnplr. A typical Monte Carlo tra~cctory is shown in Fig. (right c'-,ntaco. In the Landauer-Buttiker picture of linear

responsc trinsorr' this tranmission probability is related
to the resiNt,,nce ot the ýample so that if zhe transmission
prnhaibilt., ii ,i•initcantlv dittferent tor different impu'ity

contgurationv we can e•\ablihh that the tesistance can be
/ -cninhcantlv different tor different imounty configurations

,as well. This. then. can explain (he experimental observa-
tions.

Simulation Results

T-he simulation parameters that Ae used for our study
are the following: the number of particles simulated is
grea•er than 4(MX') which ensurrs statistical reliability. Pie

r Fermi velocity tr- = t I r10' cm;C testimated from the
measured earner concentration of I-I10i -m 2-y in sam-

r pies used in the experiment). the average distance between
impurities = 700'Af) -is estimated from the mean free
path (calculated from the measured mobility of l1.O00

r scieening length which .. , - . The screening length was estimated to be 60
is the radius of '\ based on a Fermi-Thomas model. The sample domain

influence of an impurity i' crnosen large enough to contain )40 impurities.
In Fig. 4. we plot the transmission probability vcr-

• F;; A typical Monte Carlo trieciory traced out hy sus magnetic field for three different impurity configura-
an e'ectrrn in the simulation. The centers of the circles ions. Note that for some configuration. the transmission
atir xcupied by the .rnpunties and the radii of the circles pmhahtliiy a! first increases with the magnenc field which
.- ail equal in !he sctrening iength Corriesponds to negative magnetroresistance near zero field.
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and for some other configuration the trantnission pmba- magnetic field is sensitive to the impurtry configuration
biliwy decreases which is indicauve of positive magncire- because of the correlations between the impunty scateir-
sistance. At high enough fields, the transmission always ing events,. Since the transmission probability determines
decreases with increasing field as the cyclotron radius be- the resistance of the sample. this means that the magne-
comes comparable to and then less than the separainon inresistance is a function of the impunrty configuraon.
between impurities. In this high field regime. the magne- This dependence of the magnetoresistance on the impu-
;nconductance is always negative as given by classical the- nry configuration explains the observations made in the
ory. All these features are observed in the experimentally expenment of Ref. 1.
measured characteristics. Although a quantitative compar- Uwson with the experimental data ts impossible because of Acknowledg•ement; - This wnrk was supported by the

uni nties w inh shevexperimnal paramets i ts ip osibviuse tt Air Force Office of Scientific Research under Grain No.:he un~'en'aintie$ in several parameiters, it i% obvious that AFOSR 91-0211I. by the Jesse H. Jones Foundadon antd i

there is qualitative agreement between the simulation re- AO 9 1. b

cults and the expcnmentally observed charactensucs. by IBM. U
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Coupling and Crosstalk Between High Speed
Interconnects in Ultralarge Scale

Integrated Circuits
Supnyo Bandyopadhyay, Senior Member. IEEE

Abstract-The advent of sophisticated lithographic tech- grown by wet oxidation). In addition to causing crosstalk,
niques has made it possible to fabricate densely packed ultra- tunneling can give rise to a unique problem. In multilay-
large-scale-integrated (ULSI) circuits. In these chips, intcrcon- ered interconnects, there can be crossings of two lines with
nect lines are so narrow and spaced in such close proximity that
signal from one line could easily get coupled to another causing a very thin dielectric layer sandwiched between them. If
interference and crosstalk. This paper presents a general the- the thickness of the lines is a few hundred angstroms, then
ory to model coupling between optical interconnects (wave- at the crossing we have a crossover capacitor whose ef-
guides) and quantum-mechanical coupling between narrow and fective plate area is a few hundred angstroms square and
very closely spaced silicide interconnects embedded in dielec- the plate separation is also of the same order. The corre-
trics (SiO2). sponding capacitance can be estimated from standard for-

mula [81. If the linewidths are 300 A and the plate sep-
aration is 100 A. then the crossover capacitance is

1. INTRODUCTION - I0-7 F. Since the dielectric layer between the plates is
R ECENT advances in nanolithography [1 ]-[61 have thin enough, an electron can tunnel through this layer from

made it possible to delineate electronic devices with one interconnect to another. Such tunneling can charge up
feature sizes of a few hundred angstroms in both silicon the capacitor to 10 rnV per electron! Effects such as these
and GaAs wafers. The ability to make such small features have already been observed in single discrete capacitors
has led to the development of ultralarge-scale-integrated [9]. Obviously, stray voltages of this nature are undesir-
(ULSI) circuits with packing densities far greater than able in an integrated circuit and can cause reliability prob-
those of very-large-scale-integrated (VLSI) circuits. In lems, logic errors. etc.. especially if the supply voltages
1980. Hewlett-Packard produced a single chip micropro- have been scaled down with the device sizes.
cessor with 0.5 million devices on a 1 sq cm chip using The close physical proximity of neighboring lines is not
1.25 um feature sizes 171. Today, we are envisioning chips the only cause of increased coupling in ULSI. The in-
with 104 devices. Simple scaling law shows that the fea- creasing length of interconnects with increasing chip size
ture sizes required for such ULSI chips will be a few also contributes to increased coupling since a larger re-
hundred angstroms causing extremely dense packing. gion is available for interaction when the interconnects

In ULSI chips not only are the devices densely packed. are long. Suffice it to say. then. that crosstalk and cou-
but so are the interconnects. The close proximity of in- pling can be a serious problem in large ULSI chips be-
ierconnect lines resulting from this dense packing could cause of the dense packing and long interconnect length.
lead to severe problems with mutual interference and To understand the nature of this coupling and finally to
crosstalk. In this paper. we study crosstalk due to cou- find ways of countering it. one needs to be able to de-
pling between optical interconnects (GaAs waveguides scribe and model such coupling effects within a basic mi-
embedded in AIGaAs) and coupling between narrow and croscopic formalism. In this paper. we present such a
closely spaced silicide interconnects surrounded by a di- model derived trom general coupled mode theory [101-
electric. In the case of silicide interconnects, coupling is 118). The formalism is perfectly general and applies for
caused by quantum-mechanical tunneling of electrons coupling between both optical and silicide interconnects.
from one line to another. This kind of coupling will be i.e.. for both optical coupling and quantum mechanical
especially severe if the dielectric in which the intercon- coupling (,unneling). The applicability of the model for
nects are embedded is leaky (such as porous SiaN 4 or SiO, both types of coupling is a rather fortuitous co icidence

which happens because the basic equations describing the
Manuwcnpt received August 23. 1991: revised December4. 199 1 This two types of coupling at the microscopic level are the

,ork was supported by the Otfice of Naval Research by Grant N00014-91- electromagnetic wave equation (denved from Maxwell's
J.1i05 and by IBM tnrough a Faculty Development Award. equation) and the Schrodinger equation which are math-

The awthor is with the Department ot FIcctrical Eigineenng. University
,I Notre Dame. Notre Dame. IN 46556. ematically simiar. In the next section, we present the the-

IEEE Loe Number 9107782. orn and then the Section III we cstimate coupling coefli-

iW)18-9197 92503.00 - 092 IEEE
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cients for both types of coupling. In Section IV we present Using (3). we can replace the terms within the square
results for GaAs-A.GaAs optical interconnects and sili- brackets in the left-hand side of (4) to get
cide interconnects. Finally, in Section V, we present the • -
conclusions. I

11. THEORY- CCHI- .. k1 J (cn .
A. Coupling Between Optical Interconnects =I /

To niode! electromagnetic coupling between a set of (5)
closely spaced optical interconnect lines, we view and the
interconnects as optical waveguides and start from the Finally, multiplying the above equation by &IV` (the

wave equation that governs the propagation of an electro- asterisk denotes complex conjugate) and integrating over

magnetic signai in a waveguide. We assume that the in- all space, we obtain the coupled set of equations for the

terconnects are nonlossy and nondispersive. This is a very coefficients C,

good asswnmption for optical interconnects comprising c3. m A C
GaAs waveguides surrounded by al~a/ts cladding. The Z .•20,A + JAE(W" - R)CO,, - XO.., 0

scalar wave equation for a TE mode propagating in the
." direction in any one waveguide reads 1101 (m = 1. 2. 3. . n) (6)

a2E, a 2  where 2, = I d3  and , is72 E, ( . t, ) - a - (P'.P(i. t)], (1) ef ld int
t) -t-" u ( . t) (1) the overlap between the fields in the mth and nth inter-

connect (0,.. = 3 r8 '"~.I
where E, is the Y component of the electric field in the Equation (6) is a set of n coupled second order differ-
interconnect (waveguide) and [Pc, o]Y- is the v component ential equations. The difference between (6) and the equa-
of a distributed polarization source caused by the coupling tions of conventional coupled mode theory is that we have

of signal from other interconnects. The quantities g and e not assumed 0,,,, = 0 for m * n. In fact. this assumption I
are the permeability and permittivity of the interconnects, would be incorrect in the limit of strong coupling where

To solve for the field E, in the above equation, we in- the overlap between the fields in neighboring intercon-
yoke stadard coupled mode theory. The solution nects can be quite significant and neglecting this overlap
E,,(F, t) can be written as a linear superposition of the may result in violation of energy conservation [i3]-[18].
normal modes (unperturbed fields) in the individual inter- Let us now make the following substitution
connects

c E E(F. t) C ( ,F, ,y, z,e'e (2) !D,(x) = C,,(x) exp - k, dx (7)

where A,"( y, z) is the Y component of the electric field in where

the isolated nth interconnect (in the absence of coupling) (kj)' = (w: - w;'). (8) *
and w is the signal frequency. The field ,,"( Y, z) satisfies
the unperturbed wave equation so that Substituting (7) in (6) and using (8), we get

OM, ,. + 2 ik - ix - P MR

+ Y. z = e• , ay, ax....
a2 £'(y, )e'"" - (v, e exp i k, dx = 0 Im = 1. 2,3•3 n).

(3) (9)

where w,, is the signal frequency in the nth interconnect. Equation (9) can be recast in a matmx form 3
Substituting (2) in (1), we get [A] a a 1 = 1K1111 (10)i

~~2 [1j5j + 2iIl[ DC e
-ax-- 5+ -where [i)l isan n x 1 matrix whose elements are the coef-

ficients D, D/. D - ),, [Al is ,n n x ;n matrix whose

- CA ,.'V'(y,zj I e"• clements are AM,. O,, exp (i j k, dx). (B] is an n x n
iatnfx whose elements are B... = k,O,,, exp (i I k. dx)

a2 and [K] is an n x n matrix whose elements are given by
+ z)Jt7 [tS•(t) l V Ck,,V$(V, z)ee" (4) K,n = KZ, exp (ij k, dx).

Equation 10 is the general coupled mode equations for

where {P6o( F. tr], is an operator such that 1P:o F. i)l a system of n optical interconnects. To illustrate the use-
e. = tPcoip' F". tJ],. fulness of these equations. we now proceed to solve them
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for the case or just two interconnects. For this, Ae first The above equations can be decoupled to yield
note zhat ratio of the second to the first term in the LHS OD. -D
of (10) is of the order of the ratio of the distance scale I . ilk, - k6), = 0 (15)
over which significant coupling occurs to the wavelength )x ax

of the signal in the interconnects. For electromagnetic % hose solution is
c oupling. the signal wavelength is the waveiength or the
Optical or electromagnetic signal which is between I a D . = e - Qe .. 116)
100 um typically. (We are oniv concemed %kith high speed where P and Q are constants. 25 = k- k; and v
interconnects. i.e.. optical interconnects or those that 6 where K = = fl. The last equality follows
carry uhtrashort pulses or millimeter waves.) For quantum from the fact that the two interconnects are assumed to be

mechanical coupling the wavelength is the DeBroglie iden t hal.
identical.

wavelength of electrons which is between 10 and 100 A. Assuming that the wave vectors are independent of po-
Since even for the most densely packed interconnects, we sition x, we get from (7), (13). and (15)
do not expect significant coupling to occur over such small
scales, we can always neglect the first term in the LHS of C, (x) = e"'IPe' ± Qe ... ] (17)310) in companson with the second term. This allows us where k0 = k" + k;.
to obtain closed analytical solutions of (10) in the case of Similarly. we get
two interconnects.

I If we ne2iect the first term in the LHS (10). we get C2 Wx) = -ek"•[P'e"" - Q'e.'.. (18)

.tOl,,D, exp k [k, I] ar where P'= Pk' K and Q' = Qk'-K with k =25 -t-
.2v and k- = 2 P - v.

I ')D. -To evaluate the constants P and Q, we need to apply
D, -: I ,: exp I [k. - k,] d, the boundary conditions. Let

3,'1ll C.t =0) P + Q = A,
where 'P-kQ (

C,(x 0) = = ," (19)

"21 ki(0 0221- - : -i k2(O1102  -
0 1:,lJ- This gives

I K•'2
0 ,i K:0,1  I k-

P .4
k, Kwo- = -1 A. - 5.,•;

K; 1 _ _K1101 Q A,- A (20)'k.o...- --: o0121 k,(0110. - lol-l I,

0 OONow let

2 1kjlC)(. - 0121-) k,(O0112, - ' II'I C,(Cr = L) =

1(12 C,(x = L) = (21)

We now make another transformation of variables Using (16)-(20), we get

D . D , D xp -, I, ,r B,- \A'°dt cos (PL) + -sin (•L) AF

I -K

D:,x= D , .4- / in iPL) A-/K/B..e ...+,I' (s 'L) - -sin (vL)) 43 k = k" + .i. '13), /

This reduces 11) to ( -' sin imPL) A; . (22)

aD,ID, -:Sl,.D. expi- _1 k',- k-,Ldx

, . . p - kThis equation can be written in a matrix torm as

3 -,D- Ik, - C I d '14) 23)
*ifi~~~1D1~ dxi A,[~ \J ~
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where function. H, is the unperturbed Hamiltonian, and H' is
Sthe perturbation in the Hamiltonian ansing from COUF ig.

a = e'°1 ( cos (yL.) + _ sin ivL) ) We will assume that the perturbation is static (this ne-
glects phonon-assisted or incoherent tunneling) and use

L ,t•ime-independent perturbation theory. The wave function
e sm (PL) is written as

L 10

d e°" (cos -vL- sin PL) 24) E A
- CWx)o, ( Y. z)Iee (30)

Note that the 2 x 2 matrix in (23) is in the form of a where ol 2 y, z e-E :"'h arc the unperturbed wave func-
transmission matix. The matrix element b (= c) is an tions in interconnects I and 2 in the absence of coupling.
indication of the coupling from one interconnect to an- These wave functions are eigcn functions of Ho (which is I
other. It is the fraction of the signal in interconnect I that Hermitean) and therefore orthonormal.

gets coupled to interconnect 2 after a distance L. Substi- Since 01,2( y. z)e -,E, t, h are eigen functions of Ho. i.e..
tuting back the values of K and v. we find chat the quantity they satisfy the unperturbed Schrodinger equation. it is I
b is given by easy to see that

'b i = c sin I ,v v 6-L]. ,25) z E. .Z).
Substituting (30) in (29). we get

It is easy to show that this coupling is maximum if 6 = 0 h( a2a, C!
as long as tan (KL) > sL or as long as KL :s 7r!,2. To C.2m( .- Av , ,

have 6 = 0 would require that the two interconnects be I
identical and carry the same signal frequency. Note that h2  a 2C, a2 - I. t -' C , I --. Z
when 6 is zero it is possimle for 100% ot the signal in one 2m Ita - ae 3Z 3
interconnect to get coup ed to the other and this happens l C H'(Co C,,6 (32)
at a distance = 1I

where oi " i 2( y, z)e-'
L 0 • = (26) Comparing the above equation with (5). we find :hat

they are mathematically similar. This is not surprising

In the case of 6 = 0. the coupling over a distance L is since both the electromagnetic wave equation and the
simply given by Schrodinger equation describe the propagation of a wave I

through a medium. Because of this mathematical similar-A = cl = Isin (KL)I 127) ity we can write down the coupling coefficients ibi and

Therefore. the fraction of the signal power from one in- it[ from analogy without any further denvation. 3
terconnection that is coupled into another is given by Ibl = cl = sin 'L) ,33)

ibi = = = Isin (KL)1. (28) where

The most important step now is to denve an expression (mIH; h ) - (mIH; i'/h-)0,,
for the coupling constant K. But before we proceed io do2
so. we show that the Schrodinger equation governing ,3(O,0,- -IOi.)

quantum mechanical coupling between interconnect lines imlH • iH!,i h )O, - (mlH; I 1/h 2
is mathematically similar to the wave equation governing --- (34)3 ( 0 ,i O ,2 -- I1 t0 1, -
electromagnetic coupling between optical interconnects so
that the Schrodinger equation yields similar solutions for while H,.,, - d~ro,,H'6, and
the coupling parameter b (= c). In fact, the expression 3 = v.2m(E - E,)ih = V2m(E - Ez)/h (35)
for b (for quantum mechanical tunneling) is identical to
the expression given in (27). where E, and E, are the unperturbed energy levels in in-

terconnect I and 2.
B Quantum Mechanical Coupling I11. CALCULATION OF COUPLING COEFFICIENrs

The equations governing quantum mechanical transport
of electrons through an interconnect (which can be viewed A. Optical Coupling Coefficient I
as an electron waveguide) is the Schrodinger equation To calculate the optical coupling coetticient x, we con-
which reads sider two identical parallel or crossing interconnects which

alk h-we view as optical waveguides. The configuration is
(H0  ')4 = - V -" H') , (29) shown in Fig. I(a)and (b). We concentrate on TEo wave

"2 ' propagation and one particular transverse mode. Fig. l(c)
where h is the reduced Planck's constant. m is the elec- shows the refractive indeA profile 77(z) along the z direc-
tron's effective mass. 4 ( a 4 ( F. m) is the electronic wave tion where i z v = ( ),(z) and the subscnpt r denotes
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where A and En are the free space Dermeabilities and per-

mittivities.
We will assume that the two interconnects are identical

so (hat 771 '?e2=r The electric field amplitudes are
given by [see Fig. 1(c)] [121

lEar cos (-'z -4- 0) 0 s z! d (37)
laye b, (Eexp [-o,:(z - d)] z d

* f.':exp, [a,(z - )]z S S

Sef• ., •0,,. .Z (z = E , Cos ( -Y it,-( - S :: s : z <S S -- d

""E exp [-a,(z - s- d)) z a s + d

i (38)

.- _ where

i~~M f 1 o s

E;,•"- ,N:) E,7 - 'ij)
(C)

a)Fig. I ia rwoparallel interconnects of width a and sepa'ations. b) two -= ta -[( _

crossig interconnlects. and (c) the refractive index profile along with the
electric held distnbution i two netghbonng opttc -.1 ntm,.onitCcls that act

isV 
= kaw-esi (39)

relative permeability or permittiviuy. The refractive in- and k is defined in (8).
dexes in the two interconnects are 7Rt, and 77,2, respec- The quantities 01O,0, O01. O, . and Kt 2 can now be
lively, while the refractive index of the intervening me- computed easily.
Sdium IS 7r

We now calculate the quantities N, x,, and K,2 i O 0 -

. ) which appear in the expressions for 91 K. E i -. V
I 1 = --, . cot( + 2")Yd

,,= ru•o dZg',.'(Z)(,rl - £'l),(=) -

"K dz" ''(z),i f - ,2,'z 136) - sin Q2-rd - 2;) - sin 245 (40)

I 0t, = 0:t

I 2 I -

i ,u• ( - ,(e cos (yd + 0) cos 0)!

S( si"" sin (yd + o- sin os

a,- a(e"' cos o CosI i-Yd

.- ?7~ V. 'Y (sn4-1)e ino

II I~ e-
:•T• -.V" " • {sin 1,€ +4 ^) - t,,Yin9'
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""-V-sin (y,,d) 4
. :eo - E- 4

- - ! ) a [eI"- I. J3
v V, E~

One can now use the results of (40)-143) in 12) to ob-
tain K and then use it in (27) to find the coupling parameter s layer

b for electromagnetic coupling. b I

B. Quantum Mechanical Coupling Coefficient
To estimate the coupling coefficient " associated with waveiunctons I

quantum mechanical tunneling between two intercon-

nects, we first refer to Fig. 2 which shows two parallel
interconnects (Fig. 2(a)] or two crossinz interconnects Vi

[Fig. 2Ib)j as., v,•eni of two coupled quantum wires. nEn

Fig. 2(c) plots the potential energy profile V(.) that an
electron sees along the z direction. The electron's kinetic
energy of motion in the z direction is quantized into sub-
band states that are labeled bv n E, is the energy of the '€- • s d

Pith subband state as shown in Fig. 2). The height of the n
potential bamer is IV - V, for the first interconnect and V I
- 1/, for the second interconnect. The distance between

the interconnects is s and the width of each interconnect FIR 2. da Two parallel interconnects ol width a and separation s. (bt two
(dimension along z direction) is d. Crossing interconnects, and Ic) the potential energy profile along with the

"0 wavetunctions in two neighbonng narrow interconnects that act as quantum
To calculate s., \.e first find the quantities i ,. 0- wires.

O0,1 and 0,, which appear in the expression for " (see
(34)]. Following 1151 we calculate these quantities as fol- tion
lows IYd = 2 tan-' (a/iy) + mi. (48)

H' = [V - V,], dz . i44) The quantities 01, (= 0 01- (= 0,I), HI., and U
. 1; can now be calculated easily U

The wave functions I z) and I,',_(z) are given by 1181 O,, 0'2 =

"e cos0 -0 O 0,

"/I (Z)(z co -I ) 0 :5 Z -< d 2e -' cos- 6 C- cos" (d )

Yexp I-of(z - d) cos (yd -1 0) Z a d _ -1- 2 ,a, 2a

t45) - e cos (yd + 0) cos 6(s - d) I
(e' 2e -

Cos fY(Z - s) + 0) s 5 z S - d -2
' exp a ( - s - d)] cos (y-d +0) '()

z- -- s + dof -a d. -Y I j

(46) 2• -Y(e"" sin (-yd + 0) - sin 1
4- cos 0 I I: I

where d 2/a 01 y

v = .2m/h:(V- EDt, 2e-w
+ 2/c, cos (-Yd + O)

"- = v2m/h2UE" - V,) d + 2/a

=I-tan - ( /y) . t " (ea cos 0 - cos (-yd + 6))'
tan- (c -

"2 2e- [
C -47) 7- cos (-d + 0)2,d a- " J -t- 2 1

The energy E, is the energy of an electron in the nth bound.y(sin (0d ) - e sin_0)1
state in a quantum well and is found from the eigen equa- a SO 7
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Fig. 3. ,a) The coupling parAmeter ', 2 (which is the fraction of the power (b)
in one interconnect coupled to the other) for electromagnetic coupling ver.

sus the separation between the interconnects. The interconnects are I jum Fig. 4. (a) The coupling paramtcer Ib112 for quantum mechanical coupling
wide and the refractive indexes of the interconnect material and the sur- venus the separation between interconnects. The intercoonsecU amr as-

roundings are 3.6 and 3.5, respectively. The results are plotted for two sumed to be made of polysilicon embedded in sohicon dioxide. The energy
different lengths of the interconnects, namely I and 10 cm. The angular bamer between polysilicon and oxide is assumed to be 3 eV, the electron
'iequency is 6v x 10" rad/s. fb) The coupling parameter ibl versus Lte subband energy is I eV below the bamer and the longitudina.a kinetic en-
length of the interconnect for a ipacing of 1.005 pim. All other parameters ergy is 10 meV. The width W of the interconnects is 50 A. The results are
are the same as in Fig 3Jat. plotted for two different lengths of the interconnects, namely I and 10 cm.

(b) The coupling parameter lIl ' versus the length of the interconnect tor

awo diffes l spacigs of o00 pnd 150 A. All other parameters ire the same

:(V - V)cos (yd + 0) sin (-yd) nF)jr2a (51)

2_V _ _V,) Cos 2 - GaAs with a refractive index of 3.5. Fig. 3(b) shows the
[eadj. -I2. coupling parameter due to electromagnetic coupling as a

function of interconnect length when the spacing between
(52) the optical interconnects is 1.005 utm. The signal fre-

icauo quency is assumed to be 2x1014 4z which roughly corre-
We anstf49)-(52) in (33)-(35) to ob- sponds to the signal frequency of a GaAs diode laser.

rain the coupling parameter b in the case of quantum me- Other parameters regarding the interconnects are shown
chanical coupling. in figure legends. In Fig. 4(a) we show the coupling pa-

rameter due to quantum mechanical coupling as a function
of spacing between two identical silicide interconnects

IV. RESULTS embedded in silicon dioxide. We assume that the potential

In Fig. 3(a) we show the coupling parameter Ib,52 due bamer between silicide and silicon dioxide is 3 eV which
to optical coupling as a function of the spacing s between is close to the potential barrier between silicon and silicon
two identical optical interconnects for two different dioxide. The interconnects are assumed to be 50 A wide
lengths of the interconnects. The coupling parameter Ibl 2 (the limit of present-day lithographic capability). The data
as mentioned before, is the fraction of the power in one is presented for two different lengths L of the intercon-
interconnect that is coupled to the other. The intercon- nects (L = I cm and L = 10 cm). In Fig. 4(b), we show
nects are assumed to be 1 urm wide (this is of the order of the coupling parameter as a function of the length of the
the wavelength of light emitted by semiconductor lasers interconnect for two different spacings of 100 and 150 A.
and light emitting diodes), thý material is GaAs with a All other relevant parameters about the interconnects are
refractive index of 3.6 and the isolating medium is AI- displaced in tic iegend.
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V. CONCLUSION In conclusion, we have presented a model to calculate
It is evident from the results that coupling in optical crosstaik between optical interconnects using waveguides

interconnects is not a serious problem in ULS.S This is and between narrow and closely spaced sulicide intercon-
because GaAs-AIGaAs waveguades provide excellent nects embedded in dielectncs. We find that the crosstalk
confinement of the eptical sign.!. Howe-ver. quantum me- between silicide interconnects ansing from quantum me-
chanical tunnelng can be quite serious in silicide dielec- chanical tunneling could be serious in ULSI circuits. We •
trics embedded in silicon dioxide. As shown in Fig. 4(a), have also suggested some remedies for that problem.
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We have calculated the two-dimensional spatial distnbutions of several trnnsport vanables
such as the current density, carner concentration, chemical potenual. space-charge cleccnc field,
residual msiuvity dipole potential and electromigraution forcs in disordered mesoscopic struc-
lures subjected to arbitrary magnetic fields. These fully quantumn mechanical calculations shed
new light on such magnctocranspon plhenomena as the intcger quantum Hall effect, the formauion
of magnetic bound states, magnetic response of current vortices caused by quantum interference
betwoen scuterers, the nature of residual resistivity dipoles in phase coherent transport, the dif-
F-crence between ma)onty, and minonty-carner mobilitie. in the quantum mechanical regime.
:he electron wind force and direct force of clectromigration in a mesoscopic s.stem. and a
'anety of other phenomena.

Introduction This paper is organized as follow4s. In the next section. we

desnbe the theory for calculating spatial disLnbuuom of uraaw
The spatial distnrbution of transport vanables (such as the pon variables in mesoscopic structures. Wc then present results

current density. carner concenLration. chemical potental. resid- dealing with the two-dimensional spatial dismibution of the cur-
ual resisvity dipole field. etc.) are important in understanding rent density in a disordered structure at various magnetic fields.
many quantum transport phwnomena in mesoscopic structures The current distributions show a number of dramatic effects
and also electromigratuio effects.- In this paper, we present a such as current crowding near an attractive impunty, current
microscopic calculation of such spatial distnbutions in a quasi detour around a repulsive impurity, the lormation of edge states
one dimensional structure containing localized impuntics and with perfec tranmittbvaity at the onset of the integer QM JAM

quhyetc..d to arbitrary magnetic fields. The calculations are fully Hall effect, circulating current patterns around an impurity char-
quantum-mechanical and are based on the Schrddinger equation aecenrstic of the formation of magonetic bound states, form-ation
descnbing the system. Our resuJt.s elucidate the nature of many Of current vor:,ces (in the absence of any magnetic field) as
different types of quamum magnetouanspon phenomena (e g. a msult of quantum interference between waves reflected from
the integer quantum HaU effect, current vortex formation. etc-., vainous impuntts in a sample, the quenching ot such vortices
and they also shed light on electromigration forces, particularly by a magnetic field, and so on These results and others am
the wind force and the dir-ct force on an ion that cause electro- iccompanied by the corresponding modulations in the camer
migration in solids. Electmmigution is an especially important ,onccnrraijon promle caused by -_urrnnt llow From these pro-
phenomenon in narrow onc-dimcnsional mesoscopic samples. ties. orc can clearly see the huitd;ng up of :in exccss electron
not only in iLs extreme etfeci of causing catastrophic device on-entration around an ,jtra.ttic btatlcrer and a deficit around
iailure as it does in integrated circuits, but also in that it causcs a repulsive one owing to clcctrostanc interaction of the elevros•t
impunty motion which radically alters sample characteristics with the scattemr. Also. electrons accumulate around an impu-
anid leads to I/f noise vty (inespectzve of wret.er it is attractive or repulsive) when

0749-6036/927050123 - 10 S08 00/0 -) 1992 Academic Press Limited
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", magnetic bound state fort•. These accumulations and dcpie- ' 3
tons lead to inhomogenettles tn the charge distnbution which,

in tum. lead to utihomogemnwes in whe eiecinc field within the
simple. Such inthornopencuti have a profound effect on the

driving forces of electnoni'igration acting on an ampunty located
inside the sample. IT

In addition to the spatial distributions of the current density

and carier concentration modulauon. we also show the spatial
,;istnbuuon of dUe chemical potenual inside a sample. In the e Fig. I. A quasi one-dimensional structure containing a ran- I
absence of any magnetic field, dhe chemical potential profiles dom distribution of elastic scattcrers. The structure is thin

show very d!ffercnt features depending en whether the scatter- enough in the z-directinn to allow the occupauon of only one

irs am aturactive or repulsive. Whcn a i.agnctuc held is applied, transverse subband in that dirrction. he magnetic field is in

dhe chemical potential profiles for Doth attractive and repulsive the z-dntrcuon. I
scattertrs change dramatically. A: high enough magnetic fields.
lie edges of the structure (along the dirnction ' CIurnrnt flow) transver suebbanrd can tIc occ,:uvci :, 'he z-dirrction i.c. the
'.ccome striktngly smooth tcqutpotcntial surfaccs This happens confinement is complete in the z-direc: ot. However. multiple
.-yen w hen the potentil a t 3[ Ocl center of the structu;re is exhibit- ir-an'sv cr-w•4 ,uobands m ay he• o c,.:upted in the v-d irectiort.I

:ng chaouc behavior. As a result, the longitudinal resistance The Schrodinger cquation escriing this system under a
treasured by voltage probes attached to the edges of the struc- ,-directed magnetic iictd is
lure will always read precisely icro (in a tour-probe measure- a
mentr)- This is a clear dcmonstration ol the quantum Hall c,feet. - 4- '
Mso. we hind that the chemical potential difference between . +'• = ,-.' . (1)
,he two edges of the structure it r the H.1il it•ifge drop) is
exactly cuual to the chemical potential drop between the two where f is the momentum oper-ator, t:- is an isotropic effective

contacts ot t structure when a single spin degenerate subband mass.A is the magnetic .ctonr potential. v-it. y) is the two- 3
,s occupied. Since the quantum mechanical transmission prob- dimensional wavefunction. a•nd the potential energy V consists

ibility through te structuic is exactly unity when this happens. of two terms

it means that the Hala resistance is prccisey quantized to hyi t'= . a
which is an unequivocal demonstration of the integer quantum

Hall effect. It should be noted that tlhCe results pertaining to The first term gives the clTect o1 the confining potential in he
ehc integer quantum HaU cf,"ect are found from a rigorous mi- v-directon and the secord teiif s due to impunties. We as-

croscopic caiculation and do not ;nvoke ary pienornir.ogio•,cal ,ume hardwall boundary conditions in the v-direction and delta
-onstruct, potenias for the impurities so that %%c have

From the electrostatic potential pmiile. we have :alcu1ated
-ie elecic field distnbution in the structure. The held shows
significant nhomongeneittes which have a profound intlucnce on " ' £ - = - ¾ - ' " - "' .•J(

clectu-omrigrauon. Electromigrauton is caused by toces acting

on charged imptintes (ions) within the structure which tend to where j is the total number of impunties in the structure and
cause ion motion. Such motion can drasticallv alier the behavior the summauon extends over all the impunues. The position of
of the structure in the phase coherent regime, lead to l/f noise, the ,th impunty is denoted by i z,. y, j. In all our calculations.

and. in the extreme case, physically disrupt the structure leading we neglect effects associated with the spin of the electron.
to total device failure. The two main forces o0 clcctromigrauton Ibe conhning potential itn ihe y-directton and the z-diected
amte -- wind forme" caused by collisions .with electrons tlowing magnetic field give nse to a set o: hhnd magnetnelectnC sub-

past the ion and the 'direct force" due to the electc field acting bands in the y-direction. Each such subband corrntonds to a
on whe ion. We have calculated the spatial distnbution of' the so- mode or a transport chantnel. Calling c"-,i y) the y-componcnt

called residual resisLivity dipole potential which has a profound of the wavefunctioc in the nith magnIcioclectne subband, we
effec- on the "wvind fom..'". In addition. •he directions of both carn wne the talou waviefunicuon ,F-, _, x. y? for an Cltctrio

the "wind force" and the "'direct force" at ',anous ion locations injected from the left contact with the Fermi ernergy EF into the
and at varying magnetic field have also been calculated. To rmth magneitoelectne subtiand as
our knowledge. these are the frst calculations of the ctfct.S of a I
magnetic field on electromnigration lorcts in mesoscopic samples If
in the quantum coherence regime. -E, t '.Y =

Theory 4)

r=t -. " ; l t•I•" , "
We consider a quasi one-dimensional structure as shown in where L is the length of the stucture, and k: and ti, am the

Figurn I The thickness is small cnougn 'that only a single s-directed wavcvector and x-direoctd group velocity correspond-

I
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-0 the fores of electronignmon. Tic recipes for calculating these
-;-' A quantities from the wavefuncoon are descnbed in the foUowing

1E - paragraphs.

t- .1 Spatial distribution of the current: In liner rmnpru

" transport and at low temperatures. only clectuon with the Fermi
'F I"" -. ;energy car•ty a net Currei1L Therforo. the two-dimensional

12 7 \ ,_.._ wavefunction v,,z. yj of Fermi electrons in the roth magneto-
¶ , ,lectnc subbmnd allows us co calculate the coninbutior of thal

,0 ,"subbard to the two-dIimecnsionai current density J,.(z, Y)-t I

I ' I 4
J"Z • ,

4 L e'E ,¾, .. . , . ,- ,-/

+ 1- e*-l1wro-<I (5)j 2-

The totsl current density is then lound by vecconally adding the
-. 4 43 02 -0! ;0 '3 4 contributions from all occupied sutbands (propagaung modes).

* Fig. 2: The energy-dispersion relations for the hybrid mag- so = * r. . (6)

nctoclctrnc subbands in a 2000 X' wide structure at a magnetic
flux de-rtiy of 1 5 Tesia- The solid cu.rcs are the result of The above expression provides he currcnt dcnsity at every co-
an exact numerical calculation and the broken curves are those ordinate poinm (, V). Note chat in calculating the otaW
obtained from the application of Bohr-Sommerfeld quantization density by snmming over subbands, no weighing by tde density
rule of states is necmsary in the summation since the wavefunctions

have been normalized by the square root of veiocity which takes
care o" t-e tcruity of s$aizs factor. hec above equation gives

ing to the Fermi energy in the nth subband (see Fig. 2) - These the two-dimensional spatial discnbutinn of the current density
quantities ar: found from thc dispersion relation of the hybind (J,.0 ., as a function of coordinates r. y)) for any arbitirary con-
magnetoclecu-ic subbands. The method for finding the disper- centraruon and configurasion of scattcmrs and for any magnetic
sion relations, as well as die wavefuncuons oiy') in the ,ith field.
magnetoelectric subband. has been described in reference 4 and
will not be repeated here. Finally, the subscnpt -n in Equation Carrier concentration change due to transport and
.4) indicates that the quantity corresponds wo a wavefunction its spatial distribution: To calculate the change in the car-
With an oppositely directed veiocicy as compared to the one ner concenutivon caused by a currnt. "c iollow the methood ot
with a subscnpt p. CGhu and Sorbello' At low enough temperatures. the deviation

In Equation (4). the summation over p Isubbarid index) ex- of the semiclassical electron distribution function from the equi-
tends over both occupied and unoccupied subbarnds (i.e. both libnum value in the rith subband (as caused by a small applied
propagating and evanescent modes). It is important to include electric field F driving the curwnin) is given by
enough evanescent modes in the summation so that the com-
puted wavefunction does not depend on the number of terms Afn(E) = -erErii&6(E - F' , (7)
I.M) in the summation. Even though the cvanescent modes do where r is a constar relaxation time describing a uniform back-
not carry current. they have very siveificaru effects on all trans- ground scarenng due to al elastic colisions and vi E, in) is the
port variables, and especally their spatial distrbutionis'. group velocity corresponding to electron energy E is the mth

When the wavefuncuon is written in the form of Equation subband.
(4), (i.e. each mode indexed by ±p is normalized by th• square The change in the camer concentration due to the current is
rot of the corresponding group velocityi, all propagamtig modes then given by
at the Fermi energy carry the same curent. This is consistent
w ith h well-known cancellation of t he velociy and density of 4'

statri in quasi olne-dimensional structurrs which causes every fn.(z,y) =
mode to carry the same currntm. To find the total wavefuncmion
given by Equation (4). we now only have to evaluate coefli-
ciencs A,.,Izl and B,,(z). The art found from a scattering whern N;,t•E) is the one-dimensional density of state in

'mznx method that has been uescnbed in the firs two citations the rmth magnetoelecLtnc subband (Lhe prescrinoon for calcu-
in referencre 1 Once the wavefuncxion has been cwdlusiwd. we iunig uts was provided in ricenj c 4). .%1 is the total numb•r
can calculate all quantities of interest such as the spatial dis- of propagating modes or occupied subbands. and *E,, is the
inbutiuon f the currnL carner concnrtration profiles, residual wavefunciuon of •ermi electron: i the rnh magnietolectiric sub-
resistvity dipole potental, chemical ciential, electric held. and band. This wayefunction is not esaciiy the same as Lha given
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by Equation (4); the only difTemrence is tiat there should be no where die right liaxik side is the rate or icss of clectren moru.-i-
normalization of the various modes by dhe square-root of veloc- turn due to coffisioris with the err IL can be shwn from aI
'yv in calculating 4 's,, The.reforei f we use Equation 14) for rigorous semiclassical treatmrent based on tie Boltzmanm trants-

,he wavefunction. then tn,;~zy should be be written is port equation that the right hand side is - flji i.r? where ni is

%1`1the volume concentratimn and 'tiis a semiclassical mobility asi-
= - len .ciared with scattening by the ion. In the linear response regime. 3

L'Erm~l FF ý 1 9 the above quantity is also equal to the negative of the spatial
gradient of the chemical potential iquasi Fermi level). There-

where iv is now given by equation 14) TIhe above equation gives fore, the windJ force on an ion located at coordinate jzo, yo) can
the spatial distribution of the change in the earnier concentration be found directly from the chemical potential profile around the I
as a consequencrce of transport. ion.

Spatial distribution of the residual resistivity dipole
potential: When an impurity is introduced in a solid, the n~~-Y~j -a . .1

-tsistac increases. This increase is associated with thec fnrmna- w.here it is the chemrica pooteniial U
':oni ot a "residual resistis it-, dipole~ a murid the im-purity "hich fl-ic above calculation o011ic wind ior-ce relies on fth ba-
inses urtlv' from the interaction or ciectrons with the irnpuntv ý,ii theory ot iclrernce 5 .ti~cfl di,iC rot Jistinguish between
;scacierngif. Landauer- has pointed out that tinc re;id3ual rr- crystal m .omentumn and real mot-mentum ini solid Miore sophis'
sistivity dipole potential is an important source or electric field [teared theonesa I requirr knowicdee oit the exact shape of the I
irthoniogeneities. in a sample and affects tire so called wind ion poteniial and also the exact 'pacisi d:stnbuuior of the charge
Comce" of eleetromigration. The wind forte is the force that acts pile up (or charge defictency in Lne ca-se of repulsive scatterers)
on an impunity owing to collisions with electrons dunng current around ions. These sophisticated theones could actually benefit

i~~~~n. ~~~~from our quantum mechanical ca~cl, toso h hnei h
To calculate the spatial distnbuuon of the residual resistiv:cv charge dentsity around the innot caus-ed by current flow (described

dipole potenoal, we follow Chu and Sorbcello2 . According to previously in' this section). A fully quantumn mechanical. self-
these authors, the electrostatic potential ansing from On, and the consistent and rigorous calculation of the wind force, starting
induced screening charge which attempts to locally neutralize from the Schrodinger-Pnisson equations. is, rcscrved for a future I
tIn, is the residual resistivity dipole potentia[ Within a Fermi- publication
Thomas model, self-consistenit screening gives this potential as

The "direct force" of elect romnigration. The direct force
- ~ ~on an ion in a solid subjected to an electnic field is the electro I

sacforce given by

- ~ ~ E Ptir~-:tc i. t E, t 10)

where en, ,~is the- conrinbution to eni, irorn rhe '-xh rna-r ::-- Ocert Z 's the effective vaicncv of the ion and C1 is the local
elecric ubbancl.electric held at the ion site.

From the above equation. kce can readily obtain the spa- Bosvceux and Friedel' claimed that the difference in the
tial distribution of the residual resistivity dipole potenitial. The chrg of an inrermlaual ion from the background will be cam-
residual resistivity dipole fieLd is the spatial1 gradient of thss p0 pletcly screened by the eIClecrns so that tire locxal electric field
tenusi. In contram tro the claim 03 rrtcrence 2. this field does not and hence fth direct force on such an ion will be exactly zero.
have to be always directed along toe direction of current flow. Gupta and co-workervO concluded in a similar vein that the
e-specially when quantum confinement (quantum size effect) and direct forte nn a migrating ion in the saddle point posittion is I
quantcum interference (coherent effect) are important. exactly zero.

Th'e "wind force" of eleetrornigration. The wind forrce is It was correctly pointed out by Das and Peicrlsit and also
the force that an ion or impurity in a solid expenences owing to Landauert2 that Bosvieux and Fredel could nor be correct since
an "electron wind' flowing pant it dunring currenraturiso This their coniclusion leads to ircornsistencies. For instance, if an I
electron wind imparts a force on fth ion because the electrons interstitial protn were completely srcreed arid the local field
collide with the ion and transfers momentum to the ion. The is zero, then it shoul.d be also tueu of electrons and consequently
wind force causes electromigration tmotion of icias or impun- a metal should have no electrical conductivity.
ties) which has several effects in rnesscopic structure-s such as The correct equation to use lor the direct force is Equation I
alterattion of sample conductance, lif noise. arid electnical failure (13), but the electLric; neld in that equation is not the space-
c-itued by physical disrurtirin of the sample at critical regions. averaged electric hield as assumed by H.untingtoniJ and by Lou

To calculate the wind force on an ion, we follow tne work CL alt 4 . It was stretssed by Landauer that the elcd is affected by
of Fiks and Huntington and Crone' who invoke Newton's law. the "charge density modulation" around an impunity that occurs I
The wind force is given by during current flow. T'herefore, fth held must be ciliculated self-

consitswntly by solving the Poisson and Schroidinger equation.
= - 111 In the linear response regime. ithis field can be obatrired withicuit

much diflic'ulty as described below.U
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-pAtial distributioit uf the chemical I)otentiai mid

e-lectric tield A- net, rct .ar1e ,isi-nhun-i,,i .' :" %C% 1•.C

i •n • x•r,•isiiic 1 iCnIla; I :, . . a.d cin a clectri: i;id -

Ahich a,• rclatcd to the charcc dasinhu. ,rinif-ucfl he Fois;hC n

, uat on

- _; r. ,' .-.- i. ,- ., .- . .

it a, ,shu%%n hv, Buitikcr' and Entin-Worhiman . . . . . . ..

;.n3at in n:e linear re,,ponne iereimc. And in s':Uaifls '.hc' Ihe

."talJI ajriat•on in the poter itail I i\ " niolmlin (in :'c <ti,1

"i !he ,.-'rc nc !cneh i c '.%C ,Lr,'ýc nmn i '.cr, in a'.• ', :"C

• .- . . ;. I

-riner .L nd iiare the chemical piicntials iFern.-i eneru i n
:,c I"40 .oniatls eil ih siructw -c un.dc'r trivic, ion. - - -. ................. .......

::c ~a,¢um~tm o clc tmn.• m~ccld :rm lh h.-! ,".n~ct , - -: --" - - -. -. - - -• - -_ - - - - - -. - - -
Ae a4c:utikctiori oi electrons in~iecied !mxm ihe !ci! -M.Iflt In

Sui•bband - withh c.rg' 41 -id d e,,,Ih wjlun.i;on. cel cc-

mnis inemtcd in mode rci ýiLh encrgy .:• trim Ihe r.ci c,:ntact
I: was rtinited owl!, h Ent-f-WOh-Ian c:. : '" A".-.

ialso Anat i, actuady measured at a icnmLal potcntial probe- ..........

a thaI t ;i1.1 also the 0cemical potentia. In titer wiird-s. in ths - -------- --- -- -- -- -- -- -- -----

:ýCeme. - - - -

Once :toe electrostatic (or chemical1 potential is demernined. ------ I---------------.

'he corre'ponding cerctn¢ hl,:id !s hound %imply Im ..

. .v -(b) .
]It- is I c¢ eci.lel .ct'hd :ha' •hnu id clicr I-bo ',!. on "i i' r h e. h

i CI1g . The spatial Jdilnbu:irn .i toe current dcns•ily
:;ttcct t-ein the -near rr'ponsC ree~rre Note h1mt mini ricans
`,itl c ,i -J ! j,1 ft, , rac i r-,. -- .7. . n ,:•,;:.C , , . in J SW A one ald t J -r A ',dc structure in

'ta th 41-N tie ntihe ret lru t ~.artttr~ceme he absence 01dvma-rit-i-I nc ' [ermii energy is 2.054
heIi s-'w a "nc /it the ion .- urity.an g

:110, ,j) 'urrcnt clowdire am.und ai .iraLttvc impunty. tbt.
lit- ie nest sctijon. Ac present rtýsulis deaic curren tnerarudarc'I

-ý,t'aal dtsirhbution )I the curuoni. camcr c::•ccr•;,a•i on lmice crren detour around a re[uisile .t•rct's"

Juscd h. ý,h ic ýLutrrent. the chemical ,%ienital pm;;lt -:tc rz\cd-
:a, rlsistiit(y dipole pocntil,. ..nd ihe 't.lArd :crce amid knirctl

;,rce tin :.qpurilis n a pniotlpical :A, Wua.niu m ,si.Z ti. . -

-jining ci'sic delta -catterers We conimc Ier tNth atmracti • 'nd
culse attercs ad show so ipc am s nc ..............................
.tatial pattenms respond to an cxicmn."i rnialcni It-c!;t - - ----------

- -.. .. - - . . . . .-I

[r.estuIlt s

Spatial distribution of the current aroiiu a .ingle -

Ieatterer - local erfects WNe considcr a (L.A-.- -- ir xhL.h
1, ,%Y0 A ,rig and ItO LA k,,dc. The Fhcrin crier,:s. is 2 ('54
-i•v corresponding to an ciecton concecnitranton i ", • . .11

Frr this low concentration. onlv one ,uhband :,, m.cupied in

hoth transverse directions so that irafsp)n ,; i!ncilv screlt-

.-:anncieda
In Figures 3(a) and 3b h sAe show thc current 'myiics around e Fig 4- The spatal dvisnhuiiin t'I;hc current density

s ýingle arnractive and r.pulsive sLcatcrer T-RcLiivtci :1 WCte It- r{rz;. , i in cthe stincture tit fg .i ,t ricn a m3gnrtic Ilux
encc of any magntiCc tield. lit ic c",s,;c cl an aliraciic calterer. ,jcnsit. of 2. S8 Tesla is appizcd The cunecni !lows along the lop

:he currnt is draw,%n .loser to the scat•terer v ncruas tr a repul- edge idicative o.h the 'ormation at ¢,:de states This situation

,:% -,cLiiCrer. tWe cur-ret, decturs ,roai:J bic cJa!tterer 1,h-s .tr-rc.s ,vn s to thc onset ol t.!c .'n 'icere c QtLtlsI ifaill e•fC ,t.
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bechavior is expected from etc.twsiatc attraction anri rcoutsi'on

bct•wecn ci•-•LLrns and the scjattecr
In Fig- -. we snow how the current iJLtCm changes wrien

a magnetic luxi density of 2 18 Te•la i% applied to the struc-

,urt. The impuniv is attractive. The cunrent now l',ýs cn'l" " - - - - - -i- e-
along one of the edges indicative of the formation of "d.e I
statts" There is pracucaUv no hackcattenng and the current .-.---- - --- --- --- --.......-.......
;lows straight ithough 0he small rcverse traveling •emPcrCnt
near the very top of the nigure is not due ti backscattenng, it is

.ue to skipping orbits aid its ongin was eplained in re!ctnce " "1
" T This current pattern is characiensic iot the onst ci te ...
nieger quantum Hall ceTect Thc mrle ofI pricct, transm.iting

:,dge states in the quantization oi Hall rcsistance was ,tucidatcd
.n re•erence 1I. I

:i Fig. 5. we show the c:rculating cu-jrrent pattemr aruutI I
an attractive impunty whcn a magnetic bound stat tlorms. 7.v

magnetuc tlux derisiit, is - 5 Tesla. Noie flat the cirnuiating

-urreni patterns hardly cairv any oct c~urrent int the x direcilor.
Therelore. the conduciance "ot the structure wiil he secrs low
.netti a aigrci.c tsbund stidi iiirms It wAs shown in rtcrvcnce I
f"lat ••e conductance does indccd drnp a,'rJptlv whcn a ma.ntctic

noufid state forms I
SpAtial distribution of the current around two scat- .
terers- non-local quantum interference effects: In Fig. - - .- - -- - -

i(ta). we show the current pattcrn when two attractive impun- - - --- - -

lies are present and no mag•ctic field is appihed. Stron ices -.....

form due to quantum interference between waves reflcectd from . . .

de two impunties These voontces are purely a result of non- . . . .

,.a" quantum elects. Thx physics of these oriccs were cdealt - I
,iths at length in the ltir' two citations in rclerence I These
.-onices are interesting sin-_ce they give nyc to local ed magnetic b
moments. In Fig. b(b). we show- how- on the voruces 'is de- b

stro•ed at a flux density of 0108 Tesla while the other remains
Mt a flux density of I Tcsla. gFig. ,c)). the hitNt ,onex reap. I

. .. . ... .I

U------ -------- ----- -4- -------
.-, - - -N I - -.

0 . . . - - Jl

(C)I

eFig 6 The spaual disinbution of the current in a 900 W long
and 1000 A wide structure containing two attractive impuntie•s

* Fig. 5 The spaual dissnbuuon of the curreot to the structure ýa). No mogneuc Field is present and two vonices form as a
of Fig. 3(a) when the mag•tic flux density is increased to 3 5 result of quantum interference between waves reflected from I
Tesla- At this field a mnaginetic Ibou;,d stat forms around the the two scaaterer and the walls of the sinr •.iaJ. (b). i magietic
impunty which causes the circulating current pattern The net flux density of 0.08 Tela is applied and onec of the vortices is
trainmission of curntrn through the structure is very low so that quenched. ic). the magnetic flux density is increasd to I Tesla
the conductance of the structure drop, airJptly when a magnetic and the first vortex reappezars at a diflerunt location while the
bound state forms second vnrex djisappeAr_.
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pea at a different location and the second vornx is quenchcd
with the simultaneous beginning of the formauon of edge states.

Carrier concenwration change due to current flow: In
Fig. 7(a) and 7(b), we show the change in th'c carmer concecn-
trat.•o (from the ecuilibnum value) around the attractive and
rpu!sive scanerers of Figs. 3(a) and 3(b) rcspwctively. Camers
pile up around the attractive impunty and are depicted around .

.x- repulsive impunty bccause of elcctrostatic in:craction.
Irt Fig. 4, ve show the carmer pile up around the impunty

.&hen a magretic bound state forms- The formation of iuch a
state can cause significant inhomogeneitics in the camer profile
and the a.ssociated electric field.

Chemical potential profile: In Figure 9(a). sc show the a Fig, The spatial disinlhuiiirn 0i - at a magnCtic
hemic.i poteniiai prolic around uie lanctivc imounty Oi Fi2. flux dcnsiti ol 5 5 Tcsla Ahcn i n-:c,,. x)und state forms

at. We assume that the chemical potenhials at the tL'o contacts
il the structure =at x--O and x=L) are ,, = 2.0_56 meVz and i,,
= 2052 meV Alrnosz all of the chem;cad potential diltcruncc

I - ,2 1 is dropped at the center where the imrunty is located.
This !s cypecicd since the impurity that is the major c;use of
ýhe resistance for this sample. There aft some oscillations in the
chemical potential around the impunty but these am just siRna- IV I
lurres of quantum interference effects. The case of a repulsive.. I
impunly is very aifrertnt. In Lnis case (Fig. 9(b)). Ae see that ,. ._

,,~3 : •. .=(. ' '

N -

- Fig- 9 The spatial disinbutmn ol :he .. chmical potential in
the absence if any magnctic icld -a' ihc scattercr is altractive

"*- "• •corresponding to the case on Fig. bii. ,bN. thc qcattcrr is

rcpu~stve itorrcrponding to the csJc oi Fic'. ih)) ,Notc that in

the first case. most ol thc potential drop occurs around the im-
purity which i% the dominanit causc ,t rsi.,ancre. In the second

a Fig. - The spauai disinbution of dlc change in the camer case. the potenlial is dmpped niire1 at Lih contacts showing that

.,ncunlration e nz. y) frnm the cquilihbum value due to the the contact resistances are domirint o.cr the residual resistance
cut-rent No magnetic held is applied ,a). the scattcrer is of the impunilv. This •s a malor dliffcence etiween attractive

1tiractive. i bi il-c scattcrcr is repulsivc. and MPL. sivt 'iLalteers
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the potential drop occurs more near the contacts than around the difference measured by thc.c probcs iiIl he c:jily zero. This
impunty. T'ere is orlv a narrow peak around ine impunty but is a manilcstaaion ot the qaaoznn Hea.. ct'ý,ccr. \lso the Hall

nolrmuchof anetdropfrom oncendof the impunvtyothe other ,oltage dmp ithe dTfference betwecn the chcnmical potentials at

"This means that the major conmrbutor for the resistance in this the two edges) is found to be exactly ":i " ,:. Therefore. the

case is not the impunty, but the contact resistance. A repulsive flaIl resistance is (it, -"j)/l where ' is the current flowing in

trmpunty appears to be much less effective than an attractive im- the structure. The current I is given by I = (,,.it - itj. wher-
puntv ofthetsame n cattering crons-5ecnbon in reflecung electrons '; is the two-terminal conductance. In reference 1. we caleu.

and causing resistance. We believe that this is relatcd to the fact lated ( 'or this structure and found it to be precisely 2 e

that quasi-donor states (quasi bound states; form around an at- Therefore. the Hall resistance is exactly h , 2e" which is again a
tractve tmpuntyv9 but not around a repulsive one. When quasi manifestauon of the integer quantum Hail effect.
donor states f'orm. evanescent waves build up around the impu- In Fig. 11. we show how the chemical potential changes
ntv which cause a tremendous amount of reflection and hence when the flux density is increa:cd to 3.5 TcSI. At this flux
resistance. This asIference bervteen ;me resi.lances cawed by an Jensity. a magnetic bound state forms. The bound state couples
attractive amnptaY and a repulsive ornpurts, of the same scatter- electrons between the two sets of cdgc staites carrying current I

'tIR cross-secrtOn is a major d.fference between ma/oritv carrier along the two edges of the wire and causcs -ackscattcnng. This
transport 1 when most scanerers are azrractnvet and mmnrir' car- jestroys tre quantum Hall effeet"; - a :act that is clearly seen
r:e, transport it-when most scatterers are renulstve. Note that :ram the chemical potential protile. The edges of the sample

this difference is purely a conSequence of quantum mechanics ame no longer equipotenttal surfaces so mtat toe longitudinal re-
since semiclassical scattenng theones. such as the Born approx- sistanci, will no longer measure eor). Also. the Hall voltage
imation or Fermn's G.olden rule. Jo not discrminate betwcen drop is aitTerent from t;, - i2 I so that the Hall resistance is
aitractive and repulsive scarterem -An expenmental ventication not quant.zcd to sub-multiples of hf;r This is an unequivocal

of this difference .would De to -. emnontratc i large difference Jrnons•ranon that a magnetic bound u'ate in a narrow were
between majority carner mobilitics imeasured by Hall effccti Jestroys tme anteWer quantum Hall effect.
and minonrty carner mobilities measured by Shocklcy-Haynes Spatial distribution of the residual resistivity dipole
method). patial d istributio n ow the residual r

In Figure 0. we show how- the chemical potential profile o potential In Figs. 12o a and , 2th , we how the residual I
Figure 9(a) changes when a magnetic flux density ol 2. IS Tesla resistivity dpoic potential in the case ci the single attractive

itcatterrr and the unglc repulsive scattercr of Figs. 3(a) and
is turned on. The edges of the w,,nire talong tse length become 3i'b) The potential has an approximatcly I r dccay or rise
srkingly smooth equipotential surfaces. Consequently. the Ion- where r is the radial distance from the scaticrcr, as predicted
gtudinhl resistance meas•ured b', aitaching Iwo voltage pro~bes by Chu and Sorbcllo for (he case of a iwn-jimensional electron
at any of the two edges will read exactly 7enm since the potential gas2

S~I

@ g 'i TI-c spatial di•inhwiiin oif ihc chmica:,l picntial at

a maicnctIc 'ux dcnxitv of 2 11, rcsla. Noi-hc that lie cdges col
th, siructur.: ialoni! tnc x-dIrMLcin) arc cK;cepiionjllv 'niio•ih * Fig 61 TtI "rmiiiat jisiriiii•i .ion h i c.he-mical potential
equipotential surlaccs so that the longitudinal resisancei mca- .Ahcn tlh mag.nctii. ilux denNity, is incrc.Le•d to 3 5 Tcsla and a
surcd by attaching twn prrbs ai either edge will be e•xactl, a na.ntc h)und statc tommi,. The edges ire no toncer cquipo-
zero since ihc chemical rxhicntiai difCrence b-ectwcen these iwo iential surtaccs and the Hill voltace drop is %cm, d:ffctnt. 'he I
-mres will hc ,ern The pocntial drop along the %-dtircction itni(uu!nal rci'\liinLC is nlo otll!cr ,cm and the -arnsvcrse it-
Ma311 voltagc) is jndepncdKcnt o .: x-i-scoordinatc and is cxa,,tly isianc" no lhntter quanuiicd to Nuhbtinicrral multiple:s of hb', J.

equal on the potcntial drop bxtwccn the Iwit contacts ot the struc- F1its tigure is a dirC,:t s1Ua:i/ao~n (1o he qnetrlction of the in-

ure The Hall resistance is citls ::,21" This lgure 1' a direct teger quantum Hlall etect in a narnw wire by a n. igncite bound I
,iialii/a-ioin Mt !he inic:er . tiu.niurn Hloll cifect 'late

I
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.- ! 'p•pmij: -inun v ••" ::,inhuciiin electric field in the

-.lunium H-1!! rte:mcrrncs onlinc hi lhe si(ujipon dcpictcd in
- . -- R " Fi I 11. m..nicnciic: lU, ,icn,i,, Tesla. All the field

0..t1 the Lce'licr ind i:, Jircc!cd along ire -direction iHall field).

C -

* Fig I' The ,patial di.tnhution ,tl th rcsidual resistivity -

di~v¢ potecntial in the acncc of nv manetlc licid. •i) t he
,..a:icrer iý iira•ciivc. ih MiC ,ctt1rer i, rcpul•ivc.

Spatial distribution of the electric field: In Fig. 13. we
show the electric ficld disins ution in the quantum Hall regime

corresponding to the situation tn Fig. I0. All the field is con-. Fig. 1f- Th, ,patial distnbution c! the clccinc ield when the
,cnirated at the center of the wire and is basically the Hall held magnetic field is turned off.
When the magnetic field is tur•ed off. the electric field profile
cnanges to that shown in Fig. 14. There is no net field in the
•-direction since there is no Hall voltage drop in this case. increases or decreases the direct force on an ion (Or whcther

it has any effect at all). is dcternmined by the locatios of the
"The forces of electromigration: In Figs. l5ida and lI , ions within ire sample. This is purely a quanrum-mchainica•
%,e show the directions of the wind forces and also the direct phenomenon.
forces (reca that the two forces are equal) on two impunties
in a 900 A long and 1000 X widc structumr at zero magnetic
field and at a magnetic flux density of 3.5 Tesla. Unlike in the Conclusions
case of a single impurity, no magrnici bound state formn at the
flux density of 3 5 Tesla A~hen two impurities arc present. Note In this paper. we have presented the spatial distributions of
that at zero maniRnetc field. uhe wind forces on neither impunty a large number of transport variables associated with various
is in the dirto ri of the etecricn field ,x-direction) in contrast to quantum mna~getoiranspon phenomena in mesoscopic samples.
the prrdictior,, of semiclassical theories. This diffrenice in the TbesI distributions elucidate the integer quantum Hall effctL
orientation of the forces is a quantum mechanical effect. In ad- the forrna!ion of magrrtuc bound states and its effec" on the
diuon. magneuc field can drastically change the magnitude and integer quantum Hall effect, the difference betwen resistances
the direction of the electromigration forces on both tmpunrtes. caused by attractive and repulsive scatterers of the same sicat-
In ,he case of the first impurity en the left. the magnetic field icnng cross-section and the cornreponding difference between
almost completely remoses the forces In the case of Lhc second minority and majority carner mobilities. the magnetic response
impurity. the forces are enhanced by the magnetic field. Tlerm- of current .ornicts focmed as a result of quantum interference
fore, in the quantum coherent regime. Ahether a magnetic tield betwecn scattercn. dti cic tLnc iteid d:sinruttotl ,n the quart-
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Effects of collision retardation on hot-electron transport in a two-dimensional electron gas

N. Telang and S. Bandyopadhyay
Department o~f Electrical Engineerng~, -Univenrva of Notre Dame. Notre Dame. Indiana 46556

-Received I May 1992. revised manuscnpt received 20 November 1992)

The effect of collsion retardation on not-electron transport in a two-dimensional electron gas is ezam-
ned using an ensemble Monte Carlo simulation. We find that collision retardation tiie.. a nonzero col.
osian duration, tends to make the etectrans batter by suppressmg energy-relaxing collision event,,. Col,
aision retardation also increases the ste~adv-state drift velocity and high-field mobility by suppre Sin

moinentum-reiazation events. Finally, it also increases velocity overshoot somewhat.

PACS nuxnberts): 71 .45.rim. 03.65.Sq, 71. 10. + x. 78.47. + p

* -- Hot-electron transport within the semiclassical formal- iapproach and that of Ref. 7. We do not Include space- -

ism has traditionally been modeled by the Boltzmann chreefcs by solving the Poisson equation at every
(ranspont eauation WTE). The assumption made in ap- time step in the Monte Carlo simulation, and instead of

-. :ying the BTE is tbat the durato" of individual collision using a full-band Monte Carlo. we chose an approximate
.vents suffered by electrons is vanishingly smal corn-. analytical model for the band structure of GaAs, whichIpared to quasiparticle lifetimes or mean times between. gives the energy dispersion relation as
successive collisions. If this assumption is to be avoid- kI

m - ed, then one must either resort to the full quantum kinet- -'E( 1+aE) , (1) F-
ic equation' (such as the KadanolT-Baym-Keldysh equa- 2
tion, which is much more difficult to solve than the BTE) .where E and k are the energy and wave vector, respec-

-or incorporate the effects of a finite collision duration 1 tively, m is the elfective mass at the baud bottom. and a
icollision retardation) in the BTE in some heuristic but is the nonparabolicity factor. The paramnetsu m *and a
appropriate manner. are different for the three different conducitkion-band val-

- Recently, the effects of collision retardation were in leys in GaAs and their values are chosen from Ref. 8.
corporated phenomenologically in the BTE.' The BTE is i Since the electric field in our simulation is quite low (onlyIsolved by Monte Carlo simulation. and in the simulation 1!500 V/cm), we believe that the above approximate

- a scattering event is treated as a true scattering evW analytical relation for the band structure is adequate for -

only if a uniform random number in the interval [0,I] is our purpose. Note that it is necessary to keep the electricII _ :arger than the quantity expt - t/,rlJ, where iis the time i field low in order to ensure that the collision retardation
: hat elapsed since the previous collision and r, as the col- tiMe rd is typically much smaller than the mean Lime be-
hsaon duration time for the event. If the random number tween collisions. This situation is necessary for the algo-
:S smaller than this quantity, then the event is considered rithm of Ref. 4 to be valid. 9I _a self-scattering event. The collision duration time rd IS In the simulation. we considered intrwitbband and in-
assumed to be equal to h1 AE - E,h), where E is the initial itersubband nonpolar acoustic-phonon scattering, in-
energy of the colliding electron and E.,h is the threshold trasubband and intersubband polar optical-phonon
energy for the scattering process. This expressior for 'rd scattering, electron-electron scattering, and intervalley
is derived f* ~ Landau's model for metals (Ferma-liqwid i scattering. Piezoelectric (polar acousac-pbooon) scatter-
theory). In addition, Lipavsky er Wi." have shown thatdI ing, nonpolar optical-phonon scattennjn remote ion..
calculated from this expression is identical with t)lized impurity scattering were neglecte they are notI - quasipartice formation tme s~ciised with the single- very important in modulatjon-dope(' q-etu

parice roagto. sig hi eprssontocalculaitet'd wells at tl i Lce temperature of 40 K. ALo,N plam,
las was done in Ref. 4), wit. have studied the effects of a scatten tnb not included. Electron-electou scattering

*finite collision duration on hot-electron transport in a is modeled after Goodmick and Lugli, " who have calca-
two-dimensional electron gas, using the algorithm pro- lated the rates for two-dimensional electron gases. Pho-Iposed in Ref. 4. jnon scattering was treated by Ridley's model 2 for quaan-

The test system that we chose for our simulation is a turn wells, which assumes the phonon moesi to be bulk
-ectangular quantum well of length I Mum. width 10 ium, modes rather than confined slab modes and neglects sur-
and well thickness 100 k. The confining potentials in face modes altogether. 'rhis is not a bad approximation.
both transvers directions are infuute (hardwall boundary Since the amplitudes of the slab modes denay at the inter-Iconditions). The well material is GaAs and the lattice 'face while those of the surface modes increase at the in-
,emper ure is assumed to be 40 K. Electrons are injec- terface. the sum of all modes will appear approximately
C -e emihe left contact from a Maiwellian distribution bulklikre- 10 in fact. the scattering rates calculate by ws

*and the"irnulation proceeds just as described in Reft 7 ing bulk modes do not differ greatly"~ fromn those calmu-
*~.There are, however, two differences betwee our lated by using more sohisticated models (includn mu.-
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croscovic models). ', Finally, we assume that the phonon In Fig. I, we show the steady-state electron distribu-

modes are decoupled from plasmon modes, which is a tion functions in energy for an applied electric field of 500

good approximation"5 at the low camer concentration of V/cm with and without collision retardation. Collision

10"/cm-. We also neglect hot-phonon effects. the role of returdation shifts electrons from low-energy states to the

the PauLi exclusion p inciple, 16 seUf-onsistent (space- high-energy tail, thereby causing a relative depopulation
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"Moeratures. When collision retardation is neglected zy overshoot somewhat. and also increases the steady-

.ona-dasnea line). the electron temperature is calculated ýtate velocity and energy. The ;ncrease in the steady-
:i) be -,8 K :he lattice temperature is 40 K). However. (tate velocity is obviously caused by the suppression of
m.nen coilision retaroation is included (short-dashed line). mnomentum-relaxing collisions due to retardation, and the
:he eiectron temperature rises to - 147 K. Therefore. increase in energy is caused by the suppression of
n.ilision retardation makes the electron distribution energy-relaxing events. It is interesting to note that col-

* much hotter. This is obviously due to the fact that col- lision retardation has the beneficial effects of increasing
islion retardation suppresses scattenng by rejecting many both the steady-state velocity and the velocity overshoot,
Lcattenng events near the thresholds. The scatterings which have serious implications for high-speed device ap-
zhat are suppressed are those Ior which the collision plications. However, the increase is only slight; it is .

duration exceeds the tCims"1nc the previous collision, merely - 10%.
For instance. retardation completely suppresses optical- In conclusion, we have studied the effects of collision
phonon emission at 'ust above the emission threshold, retardation on hot-electron transport in quatum-well
,since the collision duration for such an event is infinitely samples. The results show that retardation increases the
long. This robs the electron ensemble of many energy- steady-state drift velocity, average energy, and the high-relaxing scattering events and makes the distribution field mobility. These have important implications for

hotter. high-speed devices.
In Fis. 2'a) and 2ibi, we show the transient response

)t the ensemble averate velocity and the average energy
: an plied eiectnc teld of 500 V/cm. Collision recar- This work was supported by the U.S. Air Force Office
Jargon tshort-aishebd line) increases the velocity and ener- of Scientific Research under Grant No. AFOSR 91-0211.
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I Quenching of electron-acoustic phonon

scattering in quantum wires by a magnetic
field

I N. Telang and S. Bandvopadhyay
Department of Electrical Engineering

University of Notre Dame
Notre Dame. Indiana 46556

I ABSTRACT]
We demonstrate the possibility of a dramatic quenching of acoustic

I phonon scattering in semiconductor quantum wires due to an external mag-

netic field. This quenching is the consequence of a reduction in the overlap

I Detween nitia! and final state electron wavefunctions (which reduces the

I scattering matrix element) in the presence of an external magnetic field.

Such behavior is in sharp contrast to the case for optical phonons ",-here

I the opposite trend is observed. The quenching phenomenon is important in

understanding the suppression of inelastic backscattering at high magnetic

fields which leads to the quantum Hall effect (in the Bfittiker picture). Addi-

tionally, such quenching can give rise to strong negative magnetoresistance in

narrow quantum wires which may h-ve important applications in electronic

devices and magnetic field sensors.

II
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Electron-phonon scattering in quantum wires has Oeen stuaied bv a num-

ber of researchers in the past. Most of the theoretical work'-' (with some

exceptioni has addressed electron interactions with confined optical phonons I
and surfdace phonons only, while neglecting interactions with either non-polar

or polar acoustic phonons. Virtually no work has appeared in the literature

that deais with the effect of a magnetic field on phonon scattering rates.

Recently. the effect of a magnetic field on confined polar optical phonon

and surface phonon scattering rates was studied by us6. That study revealed

"That ap -",ternal magnctic field increases the eiectron scattering rate for both

polar opticai phonon and surface phonon interactions, thereby giving rise to

a positive magnetoresistance in quantum wires.

We have now extended our study to the case of electron interactions with

both polar and non-polar acoustic phonons. These phonons are more numer I
ous than optical phonons in most technologically important semiconductors I
at or beiow room temperature. \Ve find the following intriguing features:

1) In contrast to the case of optical phonon scattering, the acoustic phonon

scattering rate in a quantum wire is decreased by an external magnetic field.

(2) the decrease can be dramatic (scattering rates can be diminished by up

to six orders of magnitude at a magnetic flux density of 10 tesla). and (3) this

decrease is relatively independent of the lattice temperature. In the following

paragraphs, we describe our theoretical model and then present the results. I
Electron-phonon scattering rate is calculated from Fermi's Golden Rule.

Although the application of this rule at electron energies corresponding to

subband minima in quantum wires has been criticized, we still use the

Golden Rule because the quenching occurs mostly at energies far away from

subband minima. In fact, the quenching increases with increasing energy I
I
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3 •eDaration from the suobano minimum.

The scattering rate for scattering from an energy state E, in subband v

: in a quantum wire to an energy state E', in subband v' is given by

IS(EE,,±7) = i2rih)1.1(E•,E',, ± q- )12'6(E', - E, hwi) '1)

3 where M(E,,, Ev, ±-ý) is the matrix element for transition due to an acoustic

pnonon of energy hb,,- and wavevector 4-. The + sign stands for emission (+)

I and absorption (-) respectiveiv. For acoustic phonons. we assume a linear

.isDersion relation h.,.- = ,x,q, where v, is the longitudinal velocity of sound

'electrons only interact with longitudinal phonons).

I The matrix element is given by%

A (EI E',2 '• (y)*(y)e'-4dy JLY12 o'1,, dy )rE.1( z)e *iqs dz
.(ELE-,, " = ,

(2)

I where WE', (OE', and L'E. 'OE.) are the transverse v- (z-) components of

i the electron wavefunctions of the final and initial states in the presence of

magnetic field. k' and k are the longitudinal electron wavevectors oi these

I states, V is the interaction potential and the 6 is a lXronecker delta which

represents momentum conservation. W\e have assumed the acoustic phonon

I modes to be bulk modes iplane waves) that are unaffected by a magnetic

I field.

In the case of polar acoustic phonon interaction (piezoelectric scattering),

I the interaction potential is given by9

(he2 e ±Z (.,IV 
11/2

V*=• , 2ripv,C2q (3)

I where e is the electronic charge, c, is the piezoelectric constant, t is the

dielectric constant, 11 is the normalizing volume in the phonon BrillouinI
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'one and .\' is the phonon oCCUDation pro aoiIitvy \vicil we assume to be

".he Bose-Einstein factor.

In the case of non-polar (deformation potential) scattering, the interaction '

potential is given by 9

= 2Qpv3  (V

where D is the deformation potential.

The total scattering rate for phonon emission or absorption S*(E,) for

-iectrons with energy E in subband v is obtained by integrating over all

possible final states and phonon wavevectors.

S t (E E) = /o f E(,d)ID(E',)S(E,, E',,

- '0

where qar is the maximum phonon wavevector and D(E',) is the density of

hybrid magnetoelectric states that form in a quantum wire under an applied

magnetic field. Both D(E',,) and the wavefunctions of the magnetoelectric

states V (which appear in Equation (2)) are found by solving the Schr6dinger

equation for the quantum wire in a magnetic field. The solution employs a

numerical finite difference method. This scheme has been described in Ref. I

The structure that we chose for illustration is a GaAs quantum wire of

rectangular cross-section having width 500 A in the y-direction and thickness 3
40 A in the z-direction. The magnetic field is oriented along the z-direction.

Only one subband is occupied in the z-direction even for the highest electron I
energy considered, but many are occupied in the y-direction.

In Fig. 1(a) and 1(b), we plot the piezoelectric emission and absorption

rates S+(EI) and S-(EI) as a function of electron energy E, in the lowest I
hybrid magnetoelectric subband in the wire. There is a dramatic decreaseII
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3 2 te intra-iubbano ýcattering rates witin increa.sing ,nagnetic flux ,ensities.

This means that in narrow enough quantum wires (where only intra-subband

_cattering is allowed even for the highest energy that an electron can reach),

dramatic quenching of acoustic phonon scattering can occur in a magnetic

I field leading possibly to strong negative magnetoresistance. IL Fig. 2(a) and

5 2(bi. we plot the scattering rates for deformation potential acoustic phonon

scattering. Again, the same feature is observed.

The origin of this quenching is the following. Since both energy and

nmomentum must be conserved in the scattering process, there are certain

restrictions on the angle of scattering. For intra-subband scattering, primar-

!iv backward (large angle) scattering is allowed (in contrast to the case for

polar optical phonon and impurity scattering). This means that the initial

3 and final states of the electron (before and after scattering) will tend to have

oppositely directed velocities. In the absence of a magnetic field, two such

states will have a large wavefiinction overlap (essentially 100 %) so that the

5 matrix element for scattering (Equation 2) is large. However, when a mag-

:ietic neld is appi ed. the wavefunctions U',, (y) and 'E. (,Y) of two such states

I will be skewed in opposite directions since the Lorentz force acts in opposite

directions on oppositely traveling electrons. This decreases the overlap, and

therefore the matrix element, which causes the quenching. To illustrate this

effect, we have plotted in Fig. 3, the wavefunction of two oppositely traveling

states (in tl e lowest magnetoelectric subband) at a magnetic flux density of

I 0.1 and 10 tesla. Note that the wavevefunctions are skewed towards oppo-

3 site edges of the wire by the magnetic field which dramatically reduces the

overlap between them and therefore the scattering matrix element given by

3 Equation (2). This explains the quenching. Supression of acoustic phonon

I 5
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,rmission in superiattices oue to a magnetic hield have been observeo expert- 3
mentally before" but was attributed to a different cause. To our knowledge.

-he present mechanism has never been reported before. 3
The quenching of acoustic phonon scattering by a strong magnetic field

has serious implications for the integer quantum Hall effect. At very high

magnetic fields and low temperatures (quantum Hall regime), current in a 3
wire is carried exclusively by "ecdges states"*12 that are locaized along the

edges of the wire. Edge states localized along the same edge of the wire I
:.ave the same (lirection cf The eiectron velocity and carry current in the

ýame direction, while edge states flowing along the opposite edge have op-

posite velocities and carry current in the upposite direction. In the light of

the previous discussion, we can see that the probability of acoustic phonon

scattering between oppositely traveling edge states is extremely low. This I
contributes to our understanding as to why backscattering is suppresed at

high magnetic fields.

The suppression of backscattering is the central ingredient in the Bittiker

icture of the quantum Hall effect". In the past. we and others had demon-

strated this suppresion in the quantum Hall regime considering only eiastic U
phase preserving) scattering events"3 . We now demonstrate this suppres-

sion for inelastic (phase breaking acoustic phonon) events as well. This is

a very important extension of the Biittiker picture beyond the coherent lin-

ear response transport regime (where only elastic scattering is permitted).

The quantum Hall effect is known to survive at finite voltages and currents

when both elastic and inelastic scattering occur. This has been demonstrated 3
theoretically' 4 as well as experimentally's. Previous models attributed the

breakdown of the quantum Hall effect at high current densities to the on- I

I



-Ct oi acoustic pionion emissior" !il tiiha. ight. the suppression oi acoustic

phonlon emission has important :npilcations for tile breakdown. [t has aiso

1been claimed that the criticai current for breakdown increases with increas-

ing magnetic field. We believe that this may be due to increased suppression

of phonon scattering with increasing field which is consistent with our result.

kre have performed the calcuiation of the scattering rates at various tem-

peratures 1.1.2 K. 71 K and 100 1K). Ve found that the relative decrease in

b he scattering rate !s fairly insensitive to temperature. The cause of the

Iuerncning is the ,iecrease :n the rnitiai and finai state xavetunctions w, a

magnetic field and this phenomenon of course does not depend on tempera-

ture. Fhe experimental manifestation of the quenching however will be most

prominxent at those temperatures where acoustic phonon scattering is the

I dominant scattering mechanism in the quantum wire.

In conclusion, we have showed that a magnetic field can cause a dramatic

decrease in acoustic phonon scattering ýspecifically intra-subband scatter-

3ng in aquantum wire. In narrow enough quantum wires (where only one

zutband is accessible in energy even at the highest appiied 'lectric ;ieid).

this can cause a significaut negative rnagnetoresistance if the wire material is

such that acoustic phonon scattering is the dominant scattering mccanism

at the temperature of interest. This effect can then be used to realize mag-

netic field sensors and other types of electronic devices where the resistance

can be modulated bv an external niagnetic field. Finally, we have shown that

acoustic phonon scattering between opposite sets of edge states is suppressed

at high magnetic fields which reinforces the Bdttiker picture of the integer

quantum Hall effect.

Acknowledgement: This work was supported by the US Air Force

I



i
I

Oflice of Scientific Research under Crant .No. AFOSR 9)1-0211.I

I
i
I
I
I
I
I
I
I
I
I
I
I
I
I
I



I
I

References

i. -S. Briggs and TJ P. Leburton, Phys. Rev. B. 38. S163 (1988).

2. D. Jovanovic. S. Briggs and J. P. Leburton, Phys. Rev. B. 42, 11108
I •1999).

I 3. K. \V. Kim. MI. A. Stroscio. A. Bhatt. R. Mickevicius and V. V. Mitin. J.

i Appl. Phys., 70. 319 (1991).

. Bangien Zhu iunpublished).

3..N. Mon. H. Moomose and C. Hamaguchi. Phys. Rev. B. 45 4536 (1992).I
6, N. Telang and S. Bandvopadhyay, Proc. of the International Workshop on

I Computational Electronics. (Beckman Institute, University of Illinois, 1992)

i p. 237.

- P. F. Bagwell. Phys. Rev. B. 43. 9012 (1990).

I ~� D. .Jovanovic and .. P. Leburton. Monte Carlo Device Simulation: Full

Band and Beyond. ed. X. Hess. (Kluwer Academic Press. Boston. 1991).

.). B. K. Ridley. Quantum Processes in Semiconductors, (Oxford Science

Publications, Oxford. UIK, 1988).

I 10. S. Chaudhuri and S. Bandyopadhyav, J. Appl. Phys.. 71 3027 (1992).

I 11. A. Kastalskv and A. L. Efros. J. Appl. Phys.. 69. 841 (1991).

12, M. 136ttiker. Phys. Rev. B, 38. 9375 (1988).

1 13. See. for example, S. Bandyopadhyay, S. Chaudhiuri, B. Das and M. Cahay,

5?,periatthces and Microstructures, 12. 123 (1992): Also, see, T. Martin and

I 9



I

S. Feng, Phys. Rev. Lett.. 64. 1971 1990): J. .1. Paiacios and C. Tejedor.

Phys. Rev. B, 44. S157 (1991). The last two references show the suppression

of acoustic phonon emission as well but do so phenomenologically. They also I
assume a parabolic confining potential when the very definition of edge states

becomes nubulose.

14. Y. Lee, M. J. MeLennan. G. Klimeck. R. K. Lake and S. Datta. Su- I
perlattices and .Aticrostructures. 11, 137 (1992). This paper theoretically

demonstrates the quantum Hall effect in the linear but incoherent response

regime.

15. See. for example. G. Ebert, K. von Klitzing, K. Ploog and G %vemann.

J. Phys. C. 16, 5441 (1983); M. E. Cage, R. F. Dzuiba, B. F. Field, E.

R. Williams. S. M. Girvin. A. C. Gossard, D. C. Tsui and R. J. Wagner, I
Phys. Rev. Lett.. 51. 1374 (1983); F. Kuchar. G. Bauer, G. Weimann and 3
H. Burkhard, Surface Science 142, 196 (1984).

16. See. for example, 0. Heinonen. P. L. Taylor and S. NI. Girvin. Ph7Js.

Rev. B. 30. 3016 (1984); P. Stfeda and K. von Klitzing, J. Phys. C. 17, 3
L483 (1984); 11. L. St6rmer, A. M. Chang, D. C. Tsui and J. C. M. Hwang,

Proc. of the 17th Int. Conr' on the Phys. of Semiconductors, eds. D. J.

Chadi and W. A. Harrison. (Springer-Verlag, Berlin. 1985), p. 267.

I

I

I



I

I
FIGURE CAPTIONS

I Figure 1: Electron-polar acoustic phonon (piezoelectric) scattering rate

as a function of energy for electrons in the lowest magnetoelectric subband

I in a GaAs quantum wire. Energy is measured from the bulk conduction

band edge. The width of the wire is 500 A (along the y-direction) and the

thickness is 40 A (along the z-direction). The lattice temperature is assumed

I to be 300 K. The solid line represents no magnetic field. the shortdashed line

a magnetic flux density of 4 tesla and the long dashed line a magnetic flux

I.esnity of 10 tesla. ia) emission rate. and (b) absorption rate.

I Figure 2: Electron-non polar acoustic phonon (deformation potential)

scattering rate as a function of energy for electrons in the lowest magneto-

I electric subband in a GaAs quantum wire. The width of the wire is 500

i .A (along the y-directionl and the thickness is 40 A (along the z-direction).

The lattice temperature is assumed to be 300 K. The solid line represents no

I magnetic field. the shortdashed line a magnetic flux density of 4 tesla and

the long dashed line a magnetic flux desnity of 10 tesla. ia) emission rate,

I and (b) absorption rate.

I Figure 3: The y-component of the wavefunctions of two oppositely trav-

eling states in the quantum wire at a magnetic flux density of (a) 0.05 tesla

and (b) 10 tesla. The states are in the lowest magnetoelectric subband at an

I energy of 20 meV above bulk conduction band edge. The overlap between

these two states is reduced significantly by the magnetic field which skews

the wavefunctions towards opposite edges of the wire.
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I The effects of a magnetic field on
electron-phonon scattering in quantum

wires

I N. Telang and S. Bandvopadhyav
Department of Electrical Engineering3 University of Notre Dame

Notre Dame. Indiana 46556I]
iWe have calculated electron-phonon scattering rates in semiconductor

quantum wires subjected to an external magnetic field. A magnetic field has

I several interesting effects on the scattering rates. It drastically reduces acous-
tic phonon scattering, but increases longitudinal optical and surface optical

I ~phonon scattering rates. The decrease in the acoustic phonon scattering has

important implications for the integer quantum Hall effect. In addition. we

I have found that a magnetic field significantly enhances the difference between

the scattering rates at energies lust below and above a subband minimumrI

I and this may cause negative differential mobility to appear in quantum wires

at electric fields far below the threshold for intervalley transfer. We have also

observed other interesting features associated with one-dimensional confine-

ment of electrons and phonons.

PACS Indices: 72.1O.Di. 72.20.Dp. 72.20.Fr. 72.20.Ht
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I. Introduction

Recentlv. t:;ere nlas been a vrowing interest in the stCudV 01 electron scat-

Cring i quasi one-dimensbonai structures"t motivated by lie belief that I
these structures can exhibit exceptionally high mobilties at reduced temper-

atures. Field effect transistors with quantum wire channels have been fab-

ricated and show very large transconductances as a result of this enhanced 3
.mobility 4 . The increase in mobility accrues primarily from a suppression

of imDurity scattering which is the dominant scattering mechanism at crvo- 3
,enic ,emperatures and low electric fields. However. at room temperature

..,nd abiove. or at iiilfh electric fields. scattering in semiconductor quantum I
wires is mostly due to phonons. Phonon scattering not only determines the

low field mobility at room temperature, but it also determines the high field

saturation velocitv of electrons. the homogenoeous linewidth broadening of 3
optical transitions. the reiaxation rate for photoexcited carriers and a host

of other phenomena in quantum wires. 3
In this paper. we have rigorously caicuiated electron phonon scattering

rates iinvolvini all types of phonon modes I in quantum wires using Fermi's

Golden Rule. The appiication of this ruie in quantum wires has been crit-

icized in the past". but the criticism is valid only for electron energies at I
a subband bottom. At these energies, the density of states in quasi one-

dimensional systems diverges which makes the Fermi's Golden Rule pre-

'cription ior more correctly, the Born approximation) invalid. Attempts -

at circumventing this problem by introducing arbitrary broadening of the

,iensiLv of states i presumably associated with surface roughness) have been

reported in the literature'. We do not adopt this approach in our work since

't is (luite ad hoc: instead, we compute the scattering rates from the usual 3
Fermi's Golden Rule. but with the caveat that it is not vaiid for electron

,nerves corresponding to subband minima. I
U



Fermi's (olden iRu!e r)ase(I caicinatiori ot eiectron-pnonon scattermni rates

!n quantum wires niave heerl reported by a number oi researchers ii the

Past. Leburton et. S.a. have caicujated eiectron-longituGinai polar oDtical

phonon scattering rates in one-dimiensional structures Dut without consider-

ing phonon confinement effects tthe eiectrons are confineci. but the phonon

modes are asumed to be bulk mooesi. Recent experimental results. how-

ever. have revealed that phonon confinement may be important in quantum

,vires. Signatures of surface modes in cylindrical wires10 and confined opti-

I cal modes" in rectangular wires have been observed. Phonon confinement

-effects were explicitiv taken into account in calculating optical phonon scat-

iering rates by some other researchers recently'2-is. It turns out (not quite

unexpectedly) that the scattering rates calculated by assuming bulk modes

actually do not differ greatly from the sumtotal of scattering ra~teS due Lo

surface and confined optical modes. Presumably. this is because the confined

optical modes have nulls at the wire surfaces. whereas the surface modes

peak at the surfaces. so that the superposition of both modes looks approxi-

mateiv bulklike"6 . A-s a result. phonon confinement effects are generadiy not

I of paramount importance in electron-optical phonon interaction in ,uantum

wires.

While the above is true generally, there is one serious exception. That case

I corresponds to the situation when a magnetic field is present. In a magnetic

field. phonon confinement effects assume an added importance. In fact. it is

I because of phonon confinement that a magnetic field has any effect at all on

optical phonon scattering rates. If the optical phonon modes were unconfined

I hulk modes. all sach rffects i,ould be absent. Therefore. any experimental

manifestation of a dependence of optical phonon scattering rates in quantum

,wires on an externai magnetic nield is effectively a demonstration of Dlhonon

ontinement as wed.

\While optical ;.nonons are coniined. acoustic phonons, i)y their very na-

1
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*ire,. ~re aimo!-t ,twxa\., i-j jr,ý *netfil~eiess. a magnet ic :wio Y

'ticant offect on a ~oist - :onon .cattering as weli and 11: ls ,,ifec ;- not

.:nked to pnonon conlinement. interestingiv. the eftect on acoustic :)nonon

-catterinn is actually rnuc:i mnore ,ramatjc than the effect on opt;cai Dnonon

ýcattering. The optical pnonon scattering rate increases by less tnan an or-

*ier of magnitude at magnetic ield strengths achievable in a superconoucting

magnet 1- 10 tesla), but zhe scattering rate due to acoustic nnonons can I
decrease bv several ordcrs of, rnagnitude at the same held -trenzth. This

.as Important implications for ihe integer quantum Hall effect. a.rticuiarly

".tti respect to 'tie oreaKdown )i this eifect at high current ,:ensitie. he I

Tliantum IHail effect is manitestea at temperatures where acoustic .nonon

ýcattering is the dominant prionon scattering event' and the breai~down of

:his effect is associated ",with acoustic phonon emission. A magnetic 1ieid also

hias other interesting effects. For instance, it can cause negative iifferential

Mobility to occur in a quantum wire at electric fields far below the threshold

'or intervallev transfer. This is associated with the Riddoch-Ridlev mecha- I
;ism.

This paper is oreanized as follows. In section II we will discuss tne caicu- I
ýation of phionon scattering rates in a quantum wire subjected to a magnetic

-ield. The results will he presented along with the appropriate i1 ternretations

;n section ill. Finally. in ýection IV. we will present the conciusions. 3

I

I-

I
I
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i II. Theory

Acoustic phonon scattering in a magnetic field

We consider a quantum wire as shown in Fig. 1. Only one transverse

I subband is occupied along the z-airection (for even the highest energy an

electron can reach). but many are occupied in the v-direction. A magnetic

I tield is applied along the z-direction so that the electronic states are hybrid

magnctoelectric states. In ail calculations, we will assume that the phonons

are unaffected by the magnetic field and are in thermodynamic equilibrium so

I that the phonon occupation probability is given by the Bose Einstein factor.

The acoustic phonon scattering rate for an electron with energy E1, in the

hybrid magnetoelectric subband v to an energy state E;, in subband V' is

given by Fermi's Golden Rule

5(EE; "= E:-E0(E.',,E;,. ±q) 2'5(E, - E, -, . ,1)

Ikwhere .Xf(E,. E',. =0 is the matrix element for the transition due to an

acoustic phonon of energy A,. and wavevector q7 It should be noted that

Il ,nhe subband indices refer to v-directed subbands onlv since the confinement

in the z-direction is complete. The , sign in the delta function represents

emission(+) or absorption(- iof an acoustic phonon respectively. For acoustic

I Dhonons. we assume a linear dispersion relation tzwr = hvq 1, where v, is

the longitudinal velocity of sound (electrons oniv interact with longitudinal
I ~phonons ).

The matrix element can be written as

L -•/2 L.221 e~q

wNhere UE' ýOE,,) itild 1.'F, OE ., are the transverse N- -i components of the

.iectron wavetunction of the tirial and initial magnetoeiectric states. k' and k

I 7
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.ire the ioneitiminai electron wavevectors of ";ese ý,tates. Is the interac-

tion potentiai and the 6 is the Kronecker deita which represents momentum

conservation. We have assumed the acoustic pnonon modes to be bulk modes

!plane waves) unaffected bv the magnetic heid.

In the case of piezoelectric (or polar acoustic phonon) scattering, the

interaction potential V± is given by"'

(he " = .2e X + ) 1 '3)

where e is the electronic charge. t,, is the piezoeiectric constant. c is the
,ieiectric constant. Q is the normalizing \oiume in Brilluoin

zone. p is the mass density and .N' is the phonon occupation probability.

I'he plus sign refers to emission and the minus sign to absorption.

In the case of non-polar acoustic tdeformation potential) scattering, the

interaction potential V± is given bv' 8

q( , V? + = - 1/2

'.vriere D, is the acoustic deformation potential.

The total scattering rate 1/r, Lor acoustic emission or absorption. is

obtained b% integrating over all possible final energy states.

= dE,,dd3 D(E§,)S(E,, E,,, ±q- i5)1C7ZE,) 1 o

where qynar is the maximum phonon wavevector and D(E',,) is the density of

hybrid magnetoelectric states at the final energy E',, given by the weil-known

relation I
D(E',) = t2/T,'r/ COE,',,/Ok) 6)

To calculate the above expression. we need to know the eigenenergies

E,. wavefunctions L'E. and density of hybrid magnetoelectric states D(E,,).

These are calculated exactly by solving the Schr6dinger equation in a quan-

tum wire subjected to a magnetic field. This is accomplished using a finite

difference scheme that we have described in a previous publication,.

6



Optical phonrio scattering ini a magnetic field

To calcuiate poiar ano nion-polar longitudinal opticali LO) as wedl as

I ýiirface optical 'SO) rPhonion scattering rates. xe have followed Stroscio"

and Kim et. al."4 whose models assume confined fslabi phlonon modes. A

I more accurate model would require calculation of the phonon modes from a

3microscopic model 152 0 .2 1 -This is reserved for future work.

The longitudinal polar optical phonon scattering rate of an electron with

3 energy E, in the vth magnetoelectric subband is given byll.21

I ~-p~tE~) --.- ýPOPI<K_,, -r- 1/2 ±1/2)Ip0 pD( E', I

where '.;pop 'is the longitudinal polar optical phonon freaciuncv. N, is the

I phonon occupation probability (Bose-Einstein factor) and v,.. is the index

of the highest phionori tode considered. Again, the plus sign in the above

expression refers to emission and the minus sign to absorption. The quantity3 ~D( E',,) is the density of states at the final energy E', in the magnetoelectric

subb and v' and t he quantitv 1pop is aiven by

n =i.2 ,3I. n, = 1+3. X , T

wvhere c. (0) and xI j are t he low- and h igh- frequency relat ive permi tti v Itile.

I k, is the phonon wavevector along the length of the quantum wire. rn' and

n' are the transverse phonon mode indices along the y- and z-directions. L,,
and L, are the width and thickness of the quantum wire and Prn',' is the

3 overiap integral which can he written as

~9)

I In the above. L'mWy iOinZ)) and i~*(o)(f,,(y)) are the initial arid final

V zicomponents o he xavefunct~ons of the '-Iectron in the presence oi

I7
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.t inagnetLic heid oý i,t-lore mna the irne kunctions are the cornrnea phonon

,,lab) modes. I
The non-polar ionituainai opticai phonon scattering rate is Viven by'-

_I, o( ,~ Ph;VP0L7L, VP

where D, is the deformation potential for the optical phonon. .'vpo is the fre-

quency of the non-polar lon.itudinai optical phonon and Ivpo is the overlap 1
integral given by

Po. j/L."n Woiz- r•, -- ' . . I -) /* ).tIl~ ) *. tno JQ..... .. n,~ Z
-n'= 1.2,2..n, n'1.2.3. ''" -,, L. 12--_t

( L,, ,L.,
The scatterinz rate due to surface optical (SO) phonons is given by" t .

-"-'=Z y ' so(.0 - i/2 ± 1/2)IsoD(E',) , J2)

where .--so is the surface optical phonon frequency and I

1÷o = ,13)-

with (" being the normalization constant2 ° for phonon modes and P, an I
overlap integral given by

P1 [LY/2•[L/2 CI Iz

cosh(oL,,12)cosh( 3L.,') -Lr/2 i-/2 L/ I,

cosh(ay)coshj 3z). (14)

for symmetric surface phonon modes. and

aI jL /2 1-/2 dy dzP='~ ~ n .hnh 3L L'2-/nh( L,"2 J-_j' -L,1 L,/2 (. "2 V

sznhi ay,,sznh( 3z 1. (15)

for antisvmmetrrc surface phonon ii,.1es.

, I



I

I
Phe quantities o. .) have Deen ,iefined ano the dispersion reiation for oSO

phonons given in Ref. 14.

I In our example. oniv one subband is occupied in the z-direction. In

that case, the SO phonon scattering is due to only the symmetric modes

since the overlap integral in the z-direction becomes zero tor antisymmetric

modes. This happens since the z-component of the wavefunction (in the

lowest subband) has even parity. Had multiple modes been occupied in the

z-direction (some of which would have odd parity), the SO phonon scattering

I would have had contributions from both the symmetric and antisvyrmetric

phonon modes. This feature is not affected by a magnetic field as long as the

field is directed along the z-direction.

I In this section, we have provided analytical expressions for the scattering

rates. We now present some reuits for a prototypical quasi one-dimensional

i structure.

III. Results and Discussion

We consider a GaAs quantum wire (surrounded by AIGaAs) of width 500

.A (along the y-directioni and thickness 40 A (along the z-direction). All

I phonon scattering rates are calculated for this system.

Acoustic phonon scattering rates

In Figures 2(a) and 2(b), we show the polar acoustic phonon (piezoelec-

I tric) emission and absorption rates as a function of electron energy in the

lowest magnetoelectric subband. The results are shown for various magnetic

I field strengths. In Figures :3(ai and 3(b), we show the non-polar acous-

tic phonon (deformation potential) emission and absorption rates. again at

different magnetic field strengths. The peaks in the scattering rates are

i associated with the divergence in the density of (final) states in a quasi one-

dimensional structure.

I1 9 I
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-he ýalient feature to iote is thlat there !s a (iramatic (Iiiencl nL oi te 0 he

;ntra-.uoband scattering rate caused by a magnetic fieid. Flie rate iecreases

:)v s;zzr nrders of maonitudd at a magnetic dlux density ot 10 tesia. The Inter-

'ubbandi scattering rate also decreases. but the decrease is much less dra-

matic. In narrow enough wires, where only one transverse subbaid is oc-

rupied in both the v- and the z-direction (for even the highest energy an

electron can reach), the onlv allowed scattering is intra-subband scattering

since higher subbands are not accessible in energy. In such wires. a magnetic

held can cause cramatic quenching of acoustic phonon scattering. Ehis effect

-an then cause large negative magnetoresistance in a narrow wire. especiaily

at temperatures where acoustic phonon scattering is the dominant scattering

mechanism. Such a phenomenon has applications in magnetic held sensors.

magnetic recording heads, etc.

Another interesting feature seen in Figs. 2 and 3 is the very large differ-

ence between the scattering rates at energies just below and above the first

subband minimum. This difference is not large in the absence of a magnetic

field. but becomes teryj large in the presence of a magnetic field. Even in

th- absence of a magnetic field. such a difference was once considered capa-

ble ot triggering negative differential mobility in quantum confined systems 3
,Riddoch-Ridlev mechanism! 22 . Later simulations failed .) reveal this effect

in GaAs wires2 . but we believe that a magnetic field may cause it to appear.

Only a complete Monte Carlo simulation of electron transport or some other

solution of the Boltzmann Transport Equation can answer this question sat-

isfactorilv. This is important to know since ta) the threshold electric field for

such negative liifferentiai mobilitv is presumably much lower than that as-

sociated with intervallev transfer (Ridley-Gunn-Hilsuni effect) which makes

it possible to reaiize low power microwave oscillators. and ib) the threshold

electric field can be engineered at will by alterin. ,e dimensions (width and

,hicknessi of the wire.

10 t
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I

r 'p.ow exotain the origin ol the rrmanetic rieid in(iuced qtuenching ot the

:ntra-sutband acoustic pnonon scattering rate. Because ot tie simultaneous

I ,onservation of both energy and momentum in the scattering process. there

are certain restrictions on the angie ot scattering. For intra-subband scatter-

I ing. primarily backward (large angle) scattering is allowed (in contrast to the

case for polar optical phonon and impurity scattering, or even. as we shall see

I later. for inter-suband acoustic phonon scattering). This means that the ini-

.ial and final states of the electron i.e the states before and after scattering)

will tend to have oDpositeiV directed velocities. In the absence of a magnetic

:;eld. two such states will have a iarge wavefunction overiap tessentially 100

g) so that the matrix element for scattering (Equation 2) is large. How-

I ever. when a magnetic field is applied in the z-direction, the y-components

of the wavefunctions V, ,(Y) and V'Ey) of two such states will be skewed

I in opposite directions since the Lorentz force acts in opposite directions on

oppositelv traveling electrons. This decreases the overlap between the wave-

I functions. and therefore the matrix element. which causes the quenching. To

illustrate this effect. we have plotted in Fig. 4. the wavefunction of two oppo-

,iteiv traveling states (in the lowest magnetoelectric subband) at a magnetic

flux density of 0.0.5 and 10 tesla. Note that the wavevefunctions are sKewed

towards opposite edges of the wire by the magnetic field which drastically re-

I ,iuces the overlap between them and therefore the scattering matrix element

given by Equation (2). This explains the quenching-3 .

I -The less pronounced decrease in the inter-subband rate has a completely

different origin. It can he understood as follows. The energy separation

I Between hybrid magnetoelectric subbands increases with increasing mag-

netic field. Therefore. at higher magnetic fields. one needs higher energy

-and therefore larger wavevectori phonons to cffect inter-subband transi-

I ,ions. However, the scattering rate for higher energy phonons ib less than

for tower enterev phonons because of two reasons; ,at the phonon oc-I II



I

"upat.ion probabijity , Bose Luistein factorý decreases exponentii\iv ,Itn in-

,reasing phonon energy, and thi the interaction potential lor scattering ia

:nversely proportional to the pnonon wavevector iand therefore phonon en-

orgy) in the case of polar acoustic phonon scattering ýsee Equation 3j. In

!he case of non-polar acoustic pnonon scattering, the interaction potential

is directly proportional to the pnonon wavevector i see Equation 4). but this

linear increase is more than offset by the exponential decrease of the pnonon I
occupation probability with increasing phonon energy. All this reduces the

riter-subband scattering rate in the presence of a magnetic field. Recently. U

-his effect was observed experimentally in a superiattice 4 .

The quenching of acoustic pnonon scattering by a strong magnetic field

has serious implications for the integer quantum Hall effect. This effect is

manifested at low temperatures under high magnetic field when acoustic

phonon scattering is the dominant phonon scattering mechanism. In this

regime, current in a wire is carried exclusively by -edges states' 25 that are

localized along the edges of the wire. Edge states along opposite ediges have I
opposite velocities and carry current in the opposite direction. In the light of I
-he previous discussion. we can see that the probability of acoustic phonon

scattering between oppositely traveling edge states (backscattering) is ex-

tremely low. This shows why backscattering is suppresed at high magnetic

fields.

The suppression of backscattening is the central ingredient in the Battiker

picture for the origin of the integer quantum Hall effect"5 . In the past, we

and others had demonstrated this suppresion in the quantum Hall regime

considering only elastic !phase preserving) scattering events2 6. We have now I
demonstrated this suppression for Inelastic (phase breaking acoustic phonon)

events as well. This is a very important extension of the B1ttiker picture

beyond the coherent linear response transport regime f where only elastic

scattering is permittedi. The quantum Hall effect is known to survive at

12 I



Snite voltages anc currents when rotfl eiastic ano inetastic scattering occur.

ihis nas been uemonstrated theoreticaily- as well as experimentalivyh. Pre-

I '.iois models attributed the breakdown of the quantum Hall effect at high

,urrent densities to the onset of acoustic pnonon emission- . In that light.

i the suppression of acoustic phonon emission has important implications for

,he breakdown. It has also been claimed that the critical current for break-

down increases with increasing magnetic field. We believe that this may be

due to increased suppression of acoustic phonon scattering with increasing

rield which is consistent with our result.

\We have caiculated the magnetic field dependences of the acoustic phonon

-cattering rates at various temperatures t4.2 K. 77 K and 300 1K). WVe found

tnat the relative decrease in the scattering rate is fairly insensitive to teM-

perature. This is not surprising since the physical phenomena underlying the

quenching are not temperature dependent.

Optical Phonon Scattering Rates

i In Figures 5ia) and 5(b., we have plotted the longitudinai polar optical

inonon emission and absorption rates as a function of electron energy in the

I lowest magnetoelectric subband for various magnetic field strengths. The

non-polar optical phonon scattering rates are shown in Figs. 6(a) and 6(b).

I The latter are for the L-vallev of GaAs since this scattering mechanism is

forbidden in the F valley. Finally, the surface optical phionon (SO) scattering

I rates are shown in Figs. 7(a) and 7(b).

U.;nlike in the case of acoustic phonon scattering, all optical phonon scat-

tering rates increase with magnetic flux density. This increase becomes more

I evident in the plots of the scattering ratcs versus magnetic field which are

-hown iM Figures 5.ci. 6(c) and ",(c).

-' The increase for both polar and non-polar longitudinal optical phonon

-catterini can be explained as follows. In the absence of a inaenetic tiiid. the

I 13



,!ectron wavefunctuon in the ?th mocie is orthozonai to the ,th phonon mode 3
if z .P 1. This makes the integrals Ipop anr ,vPO ,ant the corresponding

scattering rates Pop and lir.-.po) vanish for i. rhis means that

the )th phonon mode will no1t contribute to the scattering of an eiectron in

the Zth subband. However. when a magnetic field is present. it skews the

electron wavefunctions towards one edge of the wire towing to the l,orentz

force) and this breaks the orthogonality between the electron wavefunction

in the ith mode and the jth phonon mode ti i j). As a result. ail phonon

modes now ,ontrnbute to the scattering of an electron. This opens up many

new scattering cnanneis which were previousiy torbidden. The result is an

increase in the total scattering rate when a magnetic rield is present.

In the case of SO phonon. the increase in the scattering rate can be

explained as follows. The magnetic field skews the electron wavefunctions

towards one of the edges of the wire. This increases the overlap integral P,

since the SO phonon modes are localized at the edges and decay away from

the edges. This effect is the dominant effect in a magnetic field. (Conse-

quently. the scattering rate increases. 7IAnother interesting feature in Fig. 7(b) is that. in the absence of any

magnetic field. one cannot observe the peaks in the absorption rate asso-

ciated with the divergence of the one-dimensional density of (final) states.

This was also noted in Ref. 6 and 14. It was claimed in Ref. 6 that this 3
happens because the peaks are due to inter-subband scattering as opposed

to intra-subband scattering. For SO phonon absorption. intra-subband scat- 3
tering rate dominates over inter-subband scattering rate and therefore the

peaks in the inter-subband rate are not discernible against the strong back-

ground of intra-suband scattering. However. when a magnetic field is turned

on. the peaks appear ithe two sets of peaks are associated with two phonon

branches"4 ). This indicates that a magnetic field promotes inter-subband SO 3
phonon absorption over 'ntra-.subband 50 phonon absorption. WVe believe

14 I
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I

S:'at this happens ecatle V e :iiagipetlc Vei( breaks hie )rtinogonaiitu. )e-

:'weelM tiieeiect.oll IavenniCt uji. in two (lifferent subr)alsls dln ilcreases the

).veriap integral P, :or irtertL. band transitions. This is true of SO uhonon

-mission as well. Therefore. a magnetic field brings out the peaks !n the

scattering rate.

* IV. Conclusion

In this paper. we nave investigated rigorously, for the first time. the effect

I .I a magnetic field on pnonon scattering in a quantum wire. We have demon-

-trated that a magnetic held can cause a dramatic reduction in intra-sutoband

-cattering Cdu( !o acoustic pnonons and a much less pronounced reduction in

S"he inter-subband scattering. This has important implications for the quan-

'um Hall effect. It may cause also negative differential mobilitv in a quantum

3 wire at threshold electric fields far below that required for intervalley trans-

fer. Finally, it may give rise to giant negative magnetoresistance in narrow

I enough wires at certain temperatures and electric field strengths which has

applications in magnetic field sensors.

I For optical phonon scattering, we found that the scattering rate increases

.with increasing magnetic field although the increase is nowhere near as dra-

matic as the decrease in the (ase of intra-subband acoustic phonon scattering.

I Optical phonon scattering determines the saturation velocity in most mate-

rials at electric fields below the threshold for intervallev transfer. It also

I determines the reiaxation rate for photo-excited carriers and the homoge-

neous linewidth broadening of the photoluminsence spectra. Therefore. it

I :s important to understana the effect of a magnetic field on both acoustic

and optical phonon scattering rates. This work is an important step in that

I diirection.

I Acknowledgement: This work was supported by the Air Force Office of

•cientific Research ,inder 2rant number AFOSR-91-u2211.
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3 FIGURE CAPTIONS

Figure 1: .\ quasi one-timensionai structure subjected to a Magnetic held

I the z-direction. Ehe tricKness is small enough that only one subband is

Iccupied in the z-direction at all electron energies. Several suDbands are

occupied in the v-direction.

I Figure 2 (a) Electron-polar acoustic phonon ipiezoelectrici emission rate as

a function of energy for eiectrons in the lowest magnetoelectric subband in

I a i,'u.4s quantum vire. :1)) the absorption rate. Energy is measured from

• ile uiik conduction i)and edge. Thie writh of the wire is 500A iaioni the

v-,iirection) and the thickness is 40.4 ,along the z-directioni. The lattice

!emperature is assumed to be 300 K. The solid line represents the rates in

•he absence of a magnetic field, the short-dashed line the rates in a magnetic

i rdux density of 4 tesla and the dotted line the rates in a magnetic flux density

1)f 10 tesia. ýcj The scattering rate as a function of magnetic flux density.

The tupper frame is for emission and the lower for absorption. In the upper

.'rame. the electron energv is assumed to be 37 rneV and in the lower frame.

I Jt is 25 rne\.

Figure 3 (a) Eiectron-non polar acoustic phonon emission rate as a. function

of energy for electrons in the lowest magnetoelectric subband in a ½a.4s

q quantum wire. 1I) thie absorption rate. The structure is the same as that

In Fig. 2. The solid. short-dashea and long-dashed lines represent tha same

3 magnetic flux densites as in Fig. 2. (c) The scattering rate as a function

of magnetic flux density. The upper frame is for emission and the lower for

I Lbsorption. Ill the i.pper frame. the electron energy is assumed to be .37 meV

iand in the lower frame. it is 25 mneV.

Figure 4: Phe '-,omptonent ,f the wave-functions of the two oppositely

I 'raveling states in te uantum wire at a magnetic tiux uensitv o! a i 0.05

osla and 1)1 i1) . -tares are mih te iOWesi manetoelectric -u bI )aiid

19 [
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it an energy' of 20reek ihove 'he biuik conduction band edve.U:eo'.oeriaD

')etween these two states is reduced significantly by the magnetic held which

-kews the magnetic tieid towaras opposite edges of the quantum wire.

Figure 5: Electron-longitudinai poiar optical phonon scattering rates as a

function of energy for electrons in the lowest magnetoelectric subbana. ia)

emission rate and (b) absorption rate. Again, energy is measured from the

IYttom of the bulk conduction band edge. The solid. short-dashed and long- U
dashed lines have the same interpretation as in Fig. 2. (c) The upper frame

.s the emission and tile lower .rame is the absorption rate as a function ot

magnetic flux density. I;n the upper frame, the electron energy is 60 meV

dlnd in the lower frame it is 40 meV.

Figure 6: Electron-longitudinal non polar optical phonon scattering rates

as a function of energy for electrons in the lowest magnctoelectric subband.

ia) emission rate and 0b) absorption rate. Again, energy is measured from

the bottom of the bulk conduction band edge. The solid, short-dashed arid

.ong-dashed lines have the same interpretation as in Fig. 2. ,ic The ,ipper

irame is the emission and the iower frame is the absorption rate as a function -

Of magnetic flux density. In the upper frame, the electron energy is 4.5 meV

and in the lower frame it is 10 meV.

Figure 7: Electron.surface optical phonon scattering rates as a function

of energy for electrons in the lowest magnetoelectric subband. (a) emission

rate and (b) absorption rate. Agaiu. energy is measured from the bottom 3
of the bulk conduction band edge. The solid, short-dashed and long-dashed

;ines have the samne interpretation as in Fig. 2. (c) Tlhc upper frame is the

e'mission and the lower frame is the absorption rate as a function of magnetic

ilux density. In the upper frame. the electron energy is 60 mneV and in the I
iower frame it is -10 mneV.
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I Supercomputing with spin polarized single
electrons in a quantum coupled

I architecture

_ S. Bandyopad. _. B. Das and A. E. Miller
Department of Electrical Engineering

- lUiversitv of Notre Dame
Notre Dame. Indiana 46556I

iVe (lescribe a novel quantum technology for ultrafast. uitradense and

uiltra-tow power supercomputing. The technology utilizes singie electrons

I as binary logic devices in which the spin of the electron encodes the bit

information. The architecture mimics two dimensional cellular automata. It

I is realized by iaving out on a waler regimented arrays ot nanophase particles

oach hosting an electron. Various types of logic gates. combinationai circuits

I -)r arithmetic IoLic units. ana sequential circuits for memory can oe reajized.

1 he technoiogy has many advantages such as 1 1) the aosence o0 pnvsical

interconnects between devices inter-device interaction is provided by quan-

t urn mechanical coupling between adjacent electrons), i b) ultratast switching

riffes of - I picosecond for individual devices. ic) extremely high bit density

I approaching 10 Terabits/crnt. 4) non-volatile memory, ý5) robustness and

possible room temperature operation with very high noise margin and reiia-

I blitv, (6) a very low power deiav product for switching a single oit i-- i0"

Jouiesi, and i7) a very smail power dissipation of a few tens or nanowatts

I per hit.

We describe how the devices, circuits and architecture work. and then

propose a new fabrication technology for realizing these chips.

I1
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I. INTRODUCTION

Recent advances in material growth techniques and nanolithography have

-pawned numerous proposals for novel electronic devices with superior com-

puting performance. The most notable ot these are -quantum devices" tand

associated "quantum coupled architectures") whose operations rely on quan-

tum mechanical effects as opposed to ciassical effects'-. These new device

ana architecture ideas were motivated by the belief that conventional siiicon

•ecnnoloy 'wiil reach its iimiting performance sometime around the end of I
his century '. .vnereupon entirely new roncepts wiji be required for tne next

.zeneratLion of eiectronics. I
'Xhile the !)etief regarding silicon technology may be true. none of the

quantum devices proposed so far has succeeded in replacing the conventional

silicon transistor. This. in turn. has prompted some skepticism 123 and

raised serious questions about the viability of practical quantum device tech-

nology. It is currently believed that quantum devices are not suitable for

:ntegrated circuit implem2entatin'"'" since that would tax existing mate-

,:ai and fabrication technology beyond the realm of the realistic. Moreover. I
aimost ail quantum devices, with perhaps the sole exception of resonant

tunneling devices, are restricted to operate well below room temperature

, typically -- I K) which makes them impractical.

To overcome the drawbacks of generic quantum devices, we propose a

new idea. In this scheme. the logic device Icomputing element) is a single

electron whose -spin" encodes the bit information. The two possible polar-

izations of the spin represent the two binary bits. Although this is also a I
-quantum device", it is very different from the more familiar quantum in-

terference devices where the bit information is encoded by the interference

state of an electron and switching is achieved by modulating the electron's

phase. Unlike the phase. an electron's spin is robust and cannot be flipped

I
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.asiiv 'v a-nv external Derturnanion i noise) exceDt a strong magnetic ,ieid.

Theretore "spin aevices" are znherently reizable and are practicaily immune to

*iectricai noise! This attribute sets them apart from other quantum devices.

in addition. switching a bit requires just toggling an electron s spin with

3 io physical movement of charges at ail. This is a great advantage since it

eiiminates transit time limitations on the switching speed and also resistance

capacitance (RC) time constant limits. Most importantly, it eliminates prob-

ems arising from charge trapping by material defects. The latter is a severe

">rooiem in clevices that rely on the movement of charge packets for switch-

I .. -:rice trapped charges are immonile. traoping will reduce the switcnini
4Dee drastically. This is a devastating problem in charge coupled devices"4

ani we beiieve that it will be even more serious in recently proposed granu-

lar eiectrontc ( quantum) devices's whose switching requires the movement of

I precisely one or a few electrons. usually by tunneling. Such devices will be

extremely vulnerable to trapping (unfortunately, this problem is not often

recognized by proponents of granular electronic devices). Trapping is a prob-

3 ':em in any device that relies on the transfer of charge packets' 6 and it mili

,e more severe in single- or few-electron devices simpiv because if tthe ione

,:iectron (or one out of a few) gets trapped. the failure mill be catastrophic.

Therefore. single electron devices must never rely on the physical movement

;)? charges for switching. Our single electron device meets that criterion. In

fact. ;,,e believe that it has all the advantages of quantum devices such as

I high density, high speed. low power dissipation, etc. while having none of

the usual disadvantages. This is a remarkable advancement.

This paper is organized as follows. In the next section. we describe quan-

tum coupled architectures in which physical interconnects between devices

are replaced by quantum mechanical coupling. The advantages of such an ar-

Schitecture are highlighted. We then describe how the proposed spin polarized

singie electron logic devices realize this architecture and how specific circuit

I
3
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;:incrions are rmpiementea. .iis i ,xemDiiflea bv Ine 'esiens ,iu "arious

.ogic gates. combinational digital systems for arithmetic logic units. and se-

quential digital systems for computer memory. We also provide a description

1)f how to input ano output binary Qata in such chips treading anci writing

operations). In section IV. we describe a novel fabrication process for creat- I
ing such a chip. Finally, in section V. we compare this new, revolationary

technology with other existing technologies, and then in section \"I present

the conclusions.

I
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III. QUANTUM COUPLED ARCHITECTURES

Ehe i (eao o'u an cumr couoiea interconnect less cn Ips in which ciuiantumn me-

rianicaL .oupiinf I)etween (juantum devices replaces pnvsicai interconnects

wires i dates hacK to at least 1987'. The preferred architecture for such

(.hips is cellular automata since it is most synergistic with quantum coupling.

Quantum coupiing is snort-range and couid only work in architectures that

nave nearest neignbor !nteraction. Cellular automata not only meets this

-reuirement. !riit aiso aiforris massive parallelization ano is known to beII"a&Uit ',o!eraitl.l 7 - 'd•oreom r. : si~ieai for -inine electron levices which

;iecessarliv ,ave -:naiiI ain :'fz anfl !an out because thev contain onlv a single

tiectron. Finavii. ýie ceilular automata architecture can perform any desired

memory or logic fiunction. and in some special cases is more efficient than

other architectures.

Researchers at Texas Instruments have proposed specific impiementa-

tions of ,juantum coupled integrated circuits utilizing cellular automata

architectures- These .ircuts have no Dhvsicai interconnects between de-

I.-ices and inter ,ievice communication is achieved throuenh a variety of cou-

pling mechanisms. hn one 'cheme. 'he devices are quantum dot :esonant

tunneling devices and signai is transferred from one device to the next via

.unneling of eiectrons6. Switches and logic gates i INVERTERts, NAND and

NOR gates) have been designed using this scheme6. Also more complicated

logic functions. such as Shannon cells, have been designed'. In addition to

tunneiing, other possibli coupling mechanisms that have been proposed are

I electrostatic ior capacitivei coupling-, optical coupling, acoustic coupling3 ,

etc.
The elimination of physical interconnects between devices is an important

conceptual leap in the area of ultra large scale integrated circuits since phys-

!cal interconnects pose the uitimate obstacle to further miniatunzation °.

.5
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1{owever. it must also be unuerstooci that not all connectine wires on a tfllD

,an be eiliminated. Even thouen the ones oetween devices can be eiiminated.

- he chip itself must communicate with the external worid i power supply. ter-

finais. other chips etc.) through physical wires. Therefore. at least some

devices on a chip must be connected to wires that will carry information back

and forth from the external world. These devices will act as input/output

ports. The Texas Instruments iTI) groups suggestion was that these devices

:'e Diaced at the perpheryof the chip for a simple technological reason. Bond-

nz paas tvicailv consume ,ne area occupied by several hundred thousano

:oytces. ,.heretore. :t %,vOml :',ot ne possible to 6ona zo naiviauai itra- 3
-mail devices at the center of the chip (where packing is densest to faciiitate

Inort range quantum coupling) since even the most sophisticated bonding I
•echnique would not have that kind of spatiad resolution. Therefore. it Is ad-

visabie to wire only devices at the edges of a chip (where packing is reiativelv

iparsei and provide iwritei or retrieve iread) data only to and from these

,levices. This elegant scheme is adopted in almost all interconnectless archi-

;ectures. including ours. In our scheme. data is input to electrons idevicesi

nt "e Pages of the chin whiicn communicate them to internal eiectrons via

::uantum coup-rng. Fhe :nternai electrons then perform the computation and

,onvey the result to other peripheral electrons (again, bv quantum coupling)

!rom which the result is read. This avoids the necessitv to access internal I
ilectrons.

Another important idea that was implicit in the TI scheme was the con-

Cept of using devices that are in their physical ground states to perform the

computation. The internal devices on a chip are in their ground states since

they are not connected to any power source. External energy is provided

:o them only when they receive input from their nearest neighbors through

quantum mechanical or other types of coupling. After receiving such inputs. U
:he devices again decay to their ground states (which mav be a different

6
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I
Irounlln - ate ;rom :,ie ')ne :iat inev %ere nr ) prior ;o receiving tue ,:ataL

nanv distinct ouu energeticailv degenerate ground states are possiblei. It is

'he new grourid state confiuration ot the aevices that contain the resuit of

'he computation"' The advantages of ground state computing are the in-

I herent stability of the device, improved noise immunity i noise perturbations

-nay cause the device to strav from the ground state. but it will ultimately

relax back to the ground statei and the elimination of the need to provide

refresh cycles that are responsible for about 80 % of the power consumption

.4 a conventional cnIo. These are maior advantages.

3 \ -cneme that :irtuailv 'aKes ine concept of ground Ltate computing

:n an interconnectiess architecture to its perfection was recently prcposed

I by Bakshi and co-workers-+`. In this scheme. regimented arrays of elongated

semiconductor quantum dots (termed "quantum dashes'"I are fabricated on a

Iwafer with dimensions small enough that each dash contains a singie electron.

\With the right arrangement and geometry. the ground state of this array

wil be such that. the lone electron in each dash will be displaced towards

I one or the other edge of the dash giving rise to a net charge polarization.

The noiarizations in neignOorinn uasnes are opposite wnen the system is

:n the Rround state, This mnimics antiferroelectricity. L~ach dash can now

act as a binary logic device with the two possible directions of the charge

polarization representing the two binary bits. Computation is performed by

providing input to orienting the poiarizations in) peripheral dashes. These

polarization modify those in the neighboring dashes and the effect propagates

:n a domino-type fashion through the entire array. The final configuration

of the individual polarizations in the dashes ithe new ground state) will

represent the result of the computation. Our own computing paradigm is

:aenticai to this scheme. except that we deal with electron spin rather than

I charge polarization. The advantages of this are that we obtain much better

bistabilitv of the individuai iogic devices, much faster switching, improved



I
I

:'llmaOiiltv. :iLviler noise margin. ,.tc.

.nother scheme". :nspired by trie work of Bakshi et. ai.. proposeo using

-ive semiconductor quantum (lots arranged in the snape of an X to lorm a

-ingie logic device. Each iimb of the X e!nds in a dot and a centrai dot is

placed where the limbs cross. There are oniv two electrons in the entire device

which occupy either the two pivotal dot-s in one limb or those in the other.

This gives rise to two possible (mutually perpendicular) charge polarizations.

These two polarizations represent the two binary bits. Switching a bit would

:euire the two etectrons ':l a iimD to Tunnel through the centrai dot and

,ccup} the pivorai (lots in the other timD. [his would reverse ine loiariza-

'ion. Presumabiv ,uch a scnerne affords better bistability than the scheme of

Bakshi et. ai." 3 Ilnfortunatelv. such a scheme is also replete with difficulties

and has more disadvantages than advantages. Firstly, it requires physical

movement of precsei'y one electron from a dot to another and, as stated be- I
fore. trapping of that electron in anv one dot would result in catastrophic

failure. To avoid trapping. the devices must be switched electrons trans-

"erreai extremeiv slowiv' slower than trapping/detrapping times which in

:most semiconductors is about i aseci. This will make ýuch devices oroers

,f -magnitude slower than even conventional devices. Secondly, devices thaL

rely on tunneling inherently suffer from zrreproduclbility". funneling proba-

bilitv and tunneling speed are exponentially sensitive to barrier heights and

widths which cannot be controlled with absolute precision". Consequently,

tunneling devices will have widely varying characteristics, even when they are

fabricated by the same process on the same wafer. Devices with such wide

variability are unsuitable for high density integrated circuits where billions

of devices with nominally identical characteristics must be fabricated with a

high degree of reproducibility. This problem of course affects the TI scheme

as well since it proposes to use resonant tunneling devices. However. there

!he trapping problem at least is not serious since the devices are not single

8
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,' ctron (levices. k)n n•e ,'i , ,r ano. "ne '•c•eme ,A 13akshi ,•t i.. ;ses

-ingie electron devices tnat jo require some phvsical novement ot cnarge.

Iherefore. nhey are n:ot, nt:reiv 'mmune to trapping. -;ut the problem may

not be as serious as in some otner singie electron devices. In Bakshi's scheme.

I ,4ectrons have to move within the same quantum dash. not between two dif-

ferent quantum dashes and more importantly, the movement of charges is not

I accomplished by tunneling. It is the combination of single electron transter

and transfer by tiinneiin•y that may be lethal. Considering these. the scheme

Bakshi ot. d.2 -.•pear - :,e "ie !)est among the three described so tar.

I \'though Bakshis scneme S .:uite -tegant. it has some irawacK•s. 7he

:naior drawback is that the transfer characteristic for switching is not suiffi-

S::entiv non-linear in other words. !he bistahilitv is not sufficiently *hard"),

This reduces the noise margin and device gain. In our scheme. which is

I similar to that of Bakshi et. al.. we resolve this particuiar problem by repre-

senting a logic bit with an inherently binary quantity, namely electron spin.

Iniike charge polarization. which is an analog variable. ,pin Polarization in

a quantum system is a tinarv digitai variable. It can have only two possible

:'-oiarizations andi - -flO town '. -na nothing in between. The immediate

I a~ivantae of this is that ei'.uce gain is no ionger a relevant consideration and

,he reliabilitv! noise margin improves dramaticall.

I
I
I
I

I
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III. COMPUTING WITH SPIN POLAR-
IZED SINGLE ELECTRONS I

i(e concept ot using etectron spin i an inherentiv bistaole quantity reDre-

-tent binary h originated with Fevnman. ifowever. in order to realize actual

oiogc functions and computing circuits, we nave to meet four other require-

ments that are beyond the simple bistabiiitv. These four requirements are: I
at a me.hanism -or •witching between the logic states. kb) a layout scheme

'o reailze o•iferent r-rcumt topoioRgies for different iogic functions ,these will

,t.lrorT [ :'e 'itsIr•"i COlrUtations I. oin; municaton mnethoo I .ntercon-

:ection 1 6etween mtiferent logic ,devices to trans!er information oacK ant torth

,or -ownputation ,tor this. the -tate oi one logic device must determine that of

,ts nearest neighbor if we adopt a cellular automaton approach), and (d) the

,bilitv to read and write hit information in selected (input/output) devices

Which provide the link between the chip and the external world.

The uirst requirement. namely switching a device from one logic state to

.,nother. •.i accomPiished by flipping an electron's spin. either with a iocailv

otlnied magnetic :-eld 'externatlv induceat. or nv magnon coupiing hetwt

• wo nearest nnerIfbor etectrons internallv indiuced,. fhe former is the rnecn- 3
anism for writing oits i input operation and the latter occurs whenever the

Computation process reqmres one device to switch its neighbor. . local mag-

netic fieid (an ue applied by a spin poiarized scanning tunneling microscope

•SPSTM'II 4 '2 5s 6 ip. We will discuss this in more detail later on. I
T lie second requirement is met bv fabricating s:ngle electron ceils and then

:aVyng out these cells in various two dimensional patterns by some patterning

-cfheme) to reaiize different circuit topoiogies. The spatial arr" ,gement of

1here ceils determines how the single electrons ( logic devices) a.:'c connected to

facil other and !his realizes various circit3. Fihe tntire chip cai' be fabricated

,II thiL wav.

10
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I
.-.e thir(, requirement o, inter-'iev'ce )mmunlcation s accomplisned 7Wv

,Piantum mechanicai ispln-spii tJr maenon; coupling. The spin oi one elec-

"won a-fects that of its neighbor n ne :oilowing way. It is energeticail

:avoraoie for two nearest neighbors to have opposite spins ( we will show , n's

!ateri. therefore, when the spin of one eiectron is switched, the neighbor

"eeis it since the svstem aoes to an excited state. The system can reiax

•'o the ground state only if the neighbor flips its own spin by emitting a

inonon. This. in turn. ilips the spin of the next electron. and so on. The

:fec main r)ropagates in a iomino-iike fashion until the entire system ot

I!er-trons iias icnievec a new itround state Spin configuration. litormation

:! .nereore transmitted across dhe entire chip by perturbations that act P'

Pin ahese waves typically nave speeds tha:. are abo,,t LO

three orders of magnitude smaller than the speed of light.

SFinaly. the last requirement of reading and writing bit in

-elected elements is fulfilled through the use of spin po.arized scanning tun-

:iei.nv microscope .tPSTM) t These tips can orient i writet the

I-nin ,i an ,lectron in a chosen cell bv creating a localized magnetic 'ield

atomic resolution and also !t-easure Iread th e spi.ii poiarization iin il

I -oiated ceil fron, the magntude u, the spin-depenenL 'inneiing currcn:. ;;

.he next isubseti'ns. %%,e .hc,.. .. all this '; actuailv accompilshed.

Single electron logic devices, circuits and architecture

I !n this subsection, we explain iiow single electron logic devices, circuits

i.•i archite-t",re w')rk. 5, (do this. we first show that any two nearest neigh-

ý)or ,,ectrons iw.'hose wavetunctions overiap) tend to have then spins antipar-

I ailei. "T s is caused by C'ouiomb. exchange ifld corrclation interactions. This

Literro-maynetic o'd,, , Whichi realizes a natural inverter) is the only fea-

lhat. !s iecess; fleineriting any logic function. It forms the bolt,

)asis o0 the conipiuL,[ig 'aldA

11
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.nitiferromaznetic ornering fl :, wo eiectron -vstern : .n -vnl 'ne svo

'iectrons are confined to two wedl-separated core potentiais) is actually weil

'nchwn-*- 9  It , he famous iieitler London result and its popular exam-

pie !s the Hydrogen moiecule. in contrast. a system o1 many ,more than

twol electrons is not necessarily antiferromagnetic. However. if we consider a.

)ne-dimensional array -the so-called Heisenberg chaini. then the net spin of

the array must vanish30 which is compatible with (although not a sufficient

,ondition for) antiferromagnetism. The pure antiferromaenetic (Nel) state 3
ri a one-dimensionai chain may he unstable aizainst a variety of other states

-iicn as .\ncerson , :esonantinz valence I)ona state.A. -he sn z."oo _<tare`.

'ihe mnagnetic discommensurate state3. and the spin-Pe'erts state 4  All of

these are also possible ground states in on- dimension& Nonetheless. anti-

ferromagnetism is the likely ground state In finite linear chains of quantum

confined eiectrons Iconfined in isolated cells) because quantum confinement I
keeps the electrons apart and inhibits dimerization which is required for the

other states.

"ýlanv logic rirciuts and iogc gates require iinear arrangements ichainsI

.A eiectrons Ithese chains may ne rectilinear or curvilinear,. In these cniains.

•.he spins cf neighboring electrons will be antiparallel. Such antiferromag- 3
netic chains have been araivzed bv Bethe"9 . Other circuits may require two

dimensional arrangements of electrons. A two dimensional array of spins is I
basically a two ,imensional i.ing model. If we describe it by the H-eisen-

berg spin Hamiltonian with oniv nearest neighbor interactions, then all that

is required to obtain antiferromagrintism in such a system is that the ex-

change shlitting Ieneryv difference between the singlet and tripiet states of

two neighboring electrons) be negative-9 We know this to be the case. so

:hat antiferromagnetism is the likely ground state in a two dimenjionai array

ol single electron cells as wil.

The fact that antiferromagnetism is -)referred does )t also guarantee

12
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'hat ;t s ; !table. Or A t .,illg t:me it was '-wiievP(i 'hat .,tiltierrom agnetism

in a one- otr two-,iimensinal king model is not stable against -auice per-

I rirbations -pnononsi ano ýpin waves ,na norns V3'36  H[owever. Lt is now

inderstood that the instability occurs oniv in inrinite systems. whereas tinite

I -vstems are theoretically stable37 . Therefore. it is possible to sustain stable

antiferromagnetism in a finite Ising system of restricted size.

I The phase transition to antiferromagnetism in a two dimensional Ising

ivstem occurs at a temperature T, which is given by the Onsager relation-9

1,<7 = R -.i_ ,. 1I~~~ 2, i -v•

xnere J is the exchange splitting. We wouid want this opase transition tem-

I perature to exceed room temperature so that the antiferromagnetism may

be sustained at room temperature. This would allow room temperature op-

oration of the circuits. Obviously, this can be ensured only by making the

excnange splitting Ji sufficiently large. This also causes a large energy differ-

,ence between ant~iferromagnetic and ferromagnetic ordering which improves

I the noise margin since :t decreases the probability of erratic Spin flips, This

:)roDabiiitv 1, T-- .i a temperature T. For it -o i)e maii. 'ye

I require the iagnitude of I

Fortunately. uiniike in a naturai system, the exchange spiitting J in an ar-

I t ificiallv structureci two dimensional array can be engineered. The magnitude

of .te splitting depends on two factors: (a) the separation between adjacent

I .ingle electron cells, and ( b-i the size of the cells which determines the degree

of quantum confinement for each electron. By adjusting these parameters.

we can make .1 sufficiently large to allow room temperature operation.

I To determine the right range of parameters for making :JI sufficiently

:arge, we have caicuiated 'JI exactly for a model two eiectron system by

I solving the pertinent Schrodinger equation numerically.

"The :chrddinger e-quatbon oescribing two eiectrons in two quantum boxes

13
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ainEie electron ceris) is

,J(F t i•

L 2m " 2rn' -

%vhere V is the potential profile seen by the electrons and we model it by the

profile shown in Fig. I. The above equation treats the effects of Coulomb.

direct exchange and correlation interactions exactly. Since we are dealing

With well-locajized electrons and not treating magnetic ions. we can neglect

-iuperexcIhange. indire, t excnange. itenerant exchange and dipole interactions

S SalV

.-e aoove equation ariG its simpler time-independent version i [or steady- I

-'ate dy;namics, have been soived numericailv by a number of researchers

nciuding one o0 usZ&39 . From these solutions. we have found that JI can be

larger than 100 meV if the cells have a diameter of 20 A and are separated

from each other by 10 A wivde and 1 eV high barriers. Fortunately. these

parameters can be realized in nanophase systems that we will describe later.

We aiso find that with these parameters, the critical temperature for phase

ransition to antiferromaenetism isee Equation I1)) ms - 2600 K (theoreti-

aiv i which is MucM aDove room temperature. This ailows room temperature

operation.

Logic gate realization

We now demonstrate the design of various logic circuits. For these de-

signs. all that we need to assume is one basic property: nearest neighbor

"ýiectrons have opposdte spins ianti ferromagnetic ordering). We will adopt

the convention that the "up-spin state is logic level I and the "down"spin

state is logic level 0. Interconnectless logic gates in quantum coupled ar-

chitecture were also designed in Ref. 6, 7, 22 and 23. We not only design

logic gates, but ultimately show how complete combinational and sequen- I
•ial digital systems such as half-adders and flip-flops can be constructed. To

14



I 'i.r KnowiectLe. i lus is (:ue rIst L !wsien (ji 'iuc: ,-onipiete ',,stermls in ,iuantum

ouDiea arcnitectures.

I NOT gates (inverters):

It is obvious that a svstem of iust two coupled electrons (in ciosely spaced

,:ells) constitutes a naturai inverter. If the spin of one is "'lip". then the spin of

I the other must be -down" and vice versa since the ordering is antiferromag-

retic. Therefore. if we consider the electron spin in one cell to be the input

.-no the other to 6e the output. :"he output will always be the Inverted version

I 'e input. '-,is reaiizes a NOT -ate which is 'cnematicailv denicted in

: •. 2.

I AND and NAND gates:

I To construct a NAND tate. consider three equally spaced cells in a linear

chain ( Fig. :3(a)). The two extreme cells are the two input ports anci the one

I in the middle is the output port. If the spins in the two extreme cells are

)rieiitcd -lip" i i.e. hoth inputs are held at logic level 1), then the spin in the

Tmiddle ceil must be fown~or arntiferromagnetic ordering. 'imiiarlv. is

5-asv to see that wnen the inputs are heid at logic ievei 0. the output wiil be

At 1

Now. if one of the inputs is i and the other is 0. then the output can be

either I or 0 since these two possibilities are energetically degenerate. We can

resolve this degeneracy by applying a weak external magnetic field (globaily

on the entire chip) which induces a small Zeeman splitting (smaller than

the exchange splitting J i between the "up" and "down" spin states . The

direction of this field is such that the 'up" spin state is favored. Therefore.

J any one of the two inputs is at. logic level 1. ,hen the output will also be

I at logic level 1.

We have now realized the following truth table:

1i
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Input I Inrut 2 )titIMI

0 0 1

!t is easy to see that the above table is that ot a NAND gate. Therefore.

we nave realized a NAND gate. 3
The NAND gate can be easiiv converted t.o an AND .gate by directing

*he output of the NAND gate through -n inverter. This requires four ceils

r; a non-jinear( namn. Ie two extreme cemis are the input ports ana ire one

off "he iine is the outDut oort. Fhe spin orientations in the various celis for

•.arious inputs are also shown in Fig. .3(b). It can be easily verfied from this 3
,iiagrarn ,which is essentially the 'ruth table") that this sYstem is an AND

gate.

OR and NOR gates

The OR gate can be realized from NAND gates and inverters through

an application of De Miorgans law of Boolean algebra. This law states .43

- -• - B. where A and B are two binary Boolean quantities. The right

hano side of the above equaiitv is the OR function of two quantities A and I
B. Therefore. an OR gate can be realized by realizing the left hand side of

the equality using NAND gates and inverters. The nanophase realization is

shown in Fig. 4.

Exclusive OR ge'es

Exciusive OR gates can be realized by using the exclusive OR relation Y

= 1A + B)(AB) = (AB)(AB), where .4 and B are two inputs and Y is the -

output. The nanophase array in Fig. 5 is an exclusive OR gate.

I
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Combinational digital systems for arithmetic logic

units

I . d'gital computer is requirea to perform only two nasic types ot "unc-

tions: logic operations and memory storage'. Logic operations are acheived

through combinational digitai systems (consisting of logic gatesi while ran-

3dom access memory t RAM) can be realized through sequential digital sys-

":ems. In the following example. we design the most basic combinationai

.Iigtai sNstem used In an arithmetic ioeic unit. It Is the binary haif aader.

ti a naif a( der. ;i .I ari B3 are two n inarv addends. ý' the tum. i "e

I:igit ;ndicatmn the last ;igit o0 !he sum ano C' the carry, then D) ,; tne

OxcIusive OR function of A ana B. ý i.e. D = i.A 7)(.4B)")1 while C ;s the

IA-ND function of .4 and B. The schematic realization of a half adder is shown

3 in Fig. 6(a) and the actuai realization with single electron cells is shown in

Fig. 6(b). The chip area consumed by such a system is only about .3000 .42

which promises extremely iih functional density.

In a similar fashion. one can construct code conveiters. parity checKers.

Iaritv encoders. ruiti Diexers. etc. These circuits are of course more compii-

I.ateu and are riot presented in this paper.

Sequential digital systems for random access memory

As an example of a sequential digital system for memory. we show the

design of an SR flip flop. The nanophase realization is shown in Fig. .The

reader can verify that it indeed performs as required. Other types of flip-

I ltops such as J-K and master-slave J-l. can also be constructed in a similar

fashion. From these flip-flops. all basic memory circuits such as shift registers

I and counters can he constructed"'.

1
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Reading and writing operations: orienting and detect-

ing electron spins in single electron cells

",e now address a very criticai component or any computing scheme. I

namely the READ/WRITE mechanism. The WRITE operation will align an 3
electron's spin in a single electron cell (which will be a few atom particle) to

'he desired orientation, while the READ operation will detect the orientation.

For both operations, we need to access individual ceils with virtually atomic

"esoNrtzon. This can be achieved with a spin-poiarized scanning tunneiing I
7icroscor)e -'PST.IM', xnich offer- the atomic resoiution as weii as the aDiitv

"0 coup!e to an electron s spin.

".ince their inception"•, scanning tunneiing microscopes STM) have been

extensiveiv used for surface analysis of atomic arrangements as well as

nanofabrication4 -'4 3 . A SPSTM is a special type of STM in which the probe

is constructed from a magnetic material. The tunneling current in this case

depends on the magnetization of the probe tthe spin orientation at the very

t ipi as well as the magnetization of the surface tspin orientation of the surface

atoms i. *n the last few years. there has been considerable interest in SPSTMN

:or iunoamental studies ol surface magnetism as well as deveioping tecnniques

for magnetic recording4". Using SPSTM. spin polarized electrons have been

ubserved on the surfaces of SiO52 and Cr24 '2 s. Very recently, the imaging of

nagnetite tFeC0 4 ) was reported using an Fe tip 26 . Even though SPSTM is a

relatively new technique. the results obtained in the past few years show that

it has a great potential for magnetic recording and detection in an atomic

scale. We believe it to be the ideal technique for spin READ/WRITE (spin I
alignment/spin detection) operations in single electron cells.

I
I
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Reading mechanism

3 .?he READ operation will be performea by aetecting the spin polarization

in -elected ceils (at the periphery oi the cnip) with SPSTM tips. .-\ number

3 of tips will be used for this purpose as schematically shown in Fig. S. Each

Outout port will have an individual tip attached to it. The tips themselves

3 will be fixed in space with respect to the chip since mechanical motion of

probe tips during reading and writing would slow down the computational

I •peea tinacceptably.

-;e XaV tI, -PST.I ,ietects stun ,s .S e ,oilowina. In in SPSTM. "ne

"";nneiing current (epends on the reiative spin polarizations ot the probe tip

ana the atom on the surface. The probe tip has a fixed known polarization.

"The atom on the surface can have either up- or down- spin. Thus. from a

3 measure of the tunneling current. the spin polarization in a surface atom tor

a single eiectron cell) can be determined at any time. Theoretical estimates

3 show" that the difference between the currents for the two spin polarizations

can Qliffer by a factor of 3 which is sufficiently large for unambiguous s1n1

I i.etection. This allows us to perform the READ operation.

i ,)f course. certain dificuities can be encountered in the READ operation.

These are due to magnetostriction and variations in cell size and shape.

5 .Magnetostriction can cause a change in the thickness and the shape of the

cell (particle) itself. Since the gap between the probe tip and the particle

I ;s very small A 1 .), even a small amount of magnetostriction will affect

the tunneling current. This problem needs to be investigated in detail to

I estimate its importance. A possible way to aileviate the problem is to use

a non-magnetic probe tip to measure the particle height under two different

magnetizations and then use this data to calibrate the reading operation.

3 The effect of particle shape on the tunneling current will have to be also

properly taken into consideration.

I
19



I
I

'ext. wýe stiouto ,Ludress !:ie -etection ol prone 'iaLerlais ior :PSTM.

\ number of criteria have to 6e satisfied in this regard. One important

consideration is that the maenetization of the piobe tip should no, be aifected 3
;)v the magnetization ot the aevice ano vice versa. [his will be ui-ficult since

the two tips will be in very close proximity. One solution to thi- oroblem is I
to use an antiferromainetic tip like chromium i Cr) which does not influence

the studied surface tnrougn the magnetosLatic field 4". Since the devices are

Pxpected to operate at room temperature. an additionai restriction on the 3
:iD material is that it ýrnouid have Neel or Curie temperature auove room

'emoerature. A...st ot e:ectricailv coniucting antiferrornaenets 'w-ith Neei 3
temperatures hicner than room temperature are given in ret. 44. A few of

these %InPt. InNi and Cri have been already used in SPST\% studies. Ve I
'eei that Cr probes are the optimum choice.

Finally, the question that needs to be answered is what the size or the I
SPSTM peripheral input/output d, -ices would be. Regular STMs are very

much larger than a chip so that the use of STMs may seem to defeat the

.erv purpose of intearaton. Actuaily, this is not true. We (o not use the

'SPSTMs as microscopes and we do not scan them. All we need are the

atomically sharp probe tips. lhese can be embedded or '.erticaily postioned

on the chip by a variety of nanofabrication techniques. We do not expect the

input/output devices :'o consume any more area than typicai bonding pads

and input/output pins in a regular chip.

Writing mechanism

The WRITE mechanism will polarize the spin of the electron in an input

cell to the desired orientation. Again. SPSTM tips will be used for this

purpose. To polarize an electron's spin to a desired orientation, a strong

enough magnetic field needs to be generated locally (with atomic resolution .

and range). This will be achieved bv the technique described below. .
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I \ _oit -naanetic ,rrooe ',iii )e i)iacea ;n ciose ,ontact wit; l re c':i ,l par-

"iciej. Duing tne writing operation. it wNill be magnetized electrically. The

I nManetostatic iorce experiencea i the basis for Magnetic Force Microscope)

is expected to alter the spin polarization of the particle. Probe material has

I to be selected such that the poiarization of the probe is not aitered by the

magnetostatic force. Since Fe has been demonstrated to pertorm weil as an

I SPSTM tip". soft Fe will be the first choice.

I Unidirectional isolation between input and output

:n ail electronic :ogic fievices. , necessary requirement iS :a7lirectzonat

isoiatzon betwen input an a output. [he output of one device should drive

I the input of the next: but the logic state of this next device must not influ-

once the iogic state of the preceding one. In other words, signal must flow

I unidirectionally. This is accomplished by somehow providing unidirectional

isoiation between the input and output ports of a logic device. This means

that the input signal determines the output signal but not vice versa.

I In conventionai devices. !his is accomplished through the (ievice gain.

The input signai is admoiineu on its way to the output port. vnereas the

I ,UtDUL signal is attenuated in propagating to the input port. ',lUtunatLei,

spin pojarizea single eiectron logic devices have no gain like all other granular

electronic devices. While this does not pose a problem with noise margin or

-ignai restoration since electron spin is robust and p,-actically immune to

I electrical noisei, it still poses a problem with unidirectional isolation.

I To understand why this is so. we refer to Fig. 9. There are two NOT

yate- in series and Fig. '(ai shows the equilibrium configuration of spins.

I Now imagine that the input of the first NOT gate is flipped by an external

source such as by an SPST.M !Fig. 9(b)). At this point. the spin state in

I the central cell becomes indeterminate since the spin the right cell favors the

'pspin' state while tne spin in the left cell favors the downspin state. If
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•.e external magnetic neid i refer to tlie ,iiscussion oi .-\ND gatesi favors mre

"lOpspin" state. .hen the spin in the central ceil will not dip in response to

"he external inDut. In other vords. the first NOT gate fails. In fact. if the

.-xternal input. SPSTM) is removed, the spin in the Leftmost cell (input port)

• ,il flip back to "ipspin". I
The above is an example of the input being determined by the state of

the output port rather than the reverse. This is due to the lack of unidirec-

ionai isolation between input and output. This problem was probably never 3
"-cognized and to our X<nowiedge was never addressed before in the context

)i aranuiar electronic devices. WUe Dezet'e that this is the ma~or Prooiem uTIM-

,ucf devices and may ritzimatelh itiLnt their apphicability.

\ possible solution to this problem is shown in Fig. 9(ci. We change the 3
spacing betwen ceils as shown in Fig. 9(c). Since the right cell is farther from

,he central cell than the left cell. the left cell ha- dominant sway. This pro- I
'ides effective unidirectional isolation. Unfortunately, this type of solution 3
.S problem specific. Also. increasing the separation cannot be carried on in-

.iefinatelv since increasing separation aiso decreases the strength of magnon 3
SouDiing. I ltimateiv. this iimits the number of logic devices that can be usei

, I a chip. 'c .c presently ;nvestigating this problem in greater detail.

I -

I
I
I
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IV. FABRICATION OF SINGLE ELEC-
TRON LOGIC CHIPS

i Realization of single electron logic chips with nanophase

iI materials

f [n this section. we acidress the fabrication of single electron logic chips.

The schematic view of such a chip is shown in Fig. 10. There is a dense

I arranement of ceils at the center and a sparse arrangement at the periphery.

L .e roeritherai ceis are - :e inCutolUtput oorts for reading: and writing.

hTe oovious way vto realize singie electron ceils wouid he to use coni'en-

; onal nanoiithograpnv such as electron beam or X-ray iithographv. These

I :echnioues could also jav them out in specific patterns to implement various

icrcult topologies. ltowever, we ate convinced that this wiji noi worK because

of the damages that such processes inflict on the structures. The reasons are

I elucidated later on. Therefore. we have chosen an entirely new fabrication

*echnique that utilizes nanophase particles for single electron cells. The Dat-

I 'erning scheme for laying out these cells is also novel. We believe tnat. this

:.as an exceilent chance of success.

I -The fabricatlon of single eiectron chips requires two basic abilities: ,aj

,ieDosition of nanophase particles !single electron ceilsi with good control

over size, and (b) arranging them al selected positions on a wafer to realize

'he various circuit topologies. WVe call the latter component "'patterning .n

analog' with the term commonly used in integrated circuit delineation.

I Nanophase material deposition

i The ability to deposit nanophase particles on a wafer with good control`

over size is well developcd technique. There are many methods by which

I :his can be achieved, but the gas condensation technique has been the most

I
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:roauiv auopteo. [he properties ,nu iepOSii.ion iecnniques have i)een lie-

-crioed by a numoer -,t autnors'- ..nu we reter the reader to this literature

,or iurthler eluciuation. Nanopnase particles ot - .-120_3 have been oroauced I
at Argonne National Laboratory ana have shown that a significant number ot

particles have diameters below 3i0 A. We show a high resolution TEM image I
otf ZnO particles depositea on Carbon nims in Fig. 11. [he particle diameter

is around 90 A. For even smaller particle size. one can employ rf sputtering

,)t the source material for deposition wnich can produce particles in the 20 -

"-, A. range 3 - 1,

Patterning by selective area nano deposition

To achieve the desired arrangement of particles on a .. ater for ieaiizing I
specific circuit configurations. we propose to employ a new technique that we

call selective area nano deposition (SAND). In this technique. the deposited

particles are made to nucleate only at pre-selected sites on the wafer. These

dites are chosen according to the desired arrangement and this reahizes the

')atterning. 3
7here are two ways to pre-setect nucleation sites with atomic resoiuton.

[he' are described below.

* Creation of charged nucleation sites 3
In this method. minute amounts of charge are deposited in ultra.small

ý- 30 A diameter) sites on a wafer using a field emrssior STM. An

STM can he made to operate in the field emission mode by apply- -
ing a reiatively large voltage i-', [50 V) between the probe tip and

the substrate. .-s a result, a very narrow electron beam is extracted -

from the tip. STMs operating in the field emission mode have been

demonstrated to prov:,e :3 am resolution for imagingGZ. I

For the creation oi a nucleation site. the STM probe tip will be moved -



:o the ,lesireo location anct 'rouint ,:ose to I he ýtiustrate. i.oilowin

this. a large voltage wil be applied to the probe tip which wdil result in

I �a very tine electron beam emanating from the tip. The iocation where

":he eiectron beam strikes the substrate wiii become negatively charged.

I Since the beam diameter is very small, the dimension of this charged

location is expected to De of nanometer scale. The ST.M probe tip will

then be moved to the next location and another negatively charged

I ite will be created. This is repeated tstepped across the entire wafer

,'V, ,o)fpUter rontroi) :o ,:eiineate the oesired array pattern. f t'he

3 -IIDstrate i> i nsu atuin . 'tie ' arees !n isolated -pots wil ;I:o' .,,aK ut.

The situation is anaiogous to the creation of charged spots during SEM

3 !maging of non-conducting materials.

After the patterning is complete. the nanophase particles are deposited.

They will preferentially occupy (or migrate to) the charged sites ow-

ing to electrostatic attraction, especially if they themselves had been

charged with the opposite polarity beforehand. This method :s very

3 similar to xerograpny and is illustrated in Fig. 1,2.

Once the particles nawe rmgrated to and settled down in tner nucieation

sites. they remain stuck there owing to electrostatic attraction. This

Srnav be viewed as ele'ctrostatic "bond- formation. The excess istray)

particles which did not find nucleation sites to form such bonds. will

3 be removed by passing the wafer underneath a charged stripping plate

whose charge is opposite in sign to that of the particles. Finally, we

will be left only with particles in the desired arrangement. This accom-

plishes the patterning.

One disadvantage of this scheme is the following. The wafer or sub-

3 strate on which a single electron logic chin is fabricated m',,t he con-

ducting since STM reading and writiug requires conducting substrates.

I !



However. ,iurnn patterning. it i'as to o)e made !emporarilv insulating 3
,o prevent leaK!ng away ot the ,iepositeci cnarges. .\ possible mecha-

nism for achieving this is to use cooled GaAs or silicon substrates..At 3
low temperatures. they are insulating owing to dopant "freeze out". but

they become conducting at room temperature. Therefore. cooling the I
substrate with liquid nitrogen during patterning and deposition will be
rnecessary.

9 Creation ol nanrneter size (uncharged) holes for nucleation

sites

in tnis scheme. nanometer sized holes are created by indentation using

an STM. 'ihe technique has alreadv been demonstrated on graphite 3
substrates'. A reiativelv large current and voltage is applied between

the probe tip and the substrate to generate these holes. In ref. 63. it 3
was also claimed that gold clusters deposited on the substrate prefer-

entiaily occupy these holes. [his is ezactly the SAND technique (there- U
fore. there !s alreadv some existing evidence that the SAND technique

.iil be successtuli. The advantage of this particular technique ias op-

posed to tne previous technioue of creating chargea sites j is that jaý it is 3
easier and has already been demonstrated'. and (b) one does not need

insulating iibstrates which eliminates the need for substrate cooling 3
unlike in the previous scheme.

The final issue that needs to be addressed is the stability of the particle

arrangement. Even without electrostatic attraction, deposited particles stick 3
to the surface owing to surface tension. Therefore, once a configuration is

attained, it may be maintained indefinitely. The stability Lnder adverse I
(17rC 1iil1htLC-.u. hUdi as under elevated temperatures that promote Brownian

motion, needs to be investigated.



I
I �Mass production

.. ,e process of pre-patterning with a scanning tunneling microscope is

-imiiar to -direct writing"..\Ithough effective. it has the same drawback as

SMall nirect writing processes - it is very time consuming and not suitable for

mass production. For the latter purpose. it may be more convenient to re-

I place the direct write process with a technique that involves exposure through

,a mask. This may indeed be possible. X-ray, electron beam or focused ion

I heams can be focussed to -- 10 A and therefore can pass through masks

-.vxitn rnimar :eature sizes without signiricant diffraction. \Ve can expose ,e-

Iectea areas ot a water to tiese beams3 through masks. Irraaiated areas wiil

I ecome temporarily charged or indented and desired patterns can be realized

in the same way as before. The only difference is that this process is suitable

I for mass production and will have a high throughput. although it requires a

much larger capital investment.

IAdvantages of Selective Area Nano Deposition (SAND)

I .may appear unusual that we have chosen an entirely new fabrication

I scnerne for fabricating arrays of ultrasmail particles in apparent neglect of the

weil-known and time honored techniques of electron beam or x-ray lithogra-

I phy followed by post processing. This is because we believe that lithography

followed by post processtnq is totally unsuitable for creating structures that are

I a. few tens of angstroms in size as opposed to a few thousands of angstromrs

in size. To our knowledge. no attempt aL creating undepleted semiconductor

I structures of a few tens of angstroms in size has been successful with lithcg-

raphy and post processing. The reason for thiq ig th.-t elrtoin beam or x-ray

hithography introduces an abundance of material defects' during exposure

I which are further increased during post procesing (such as reactive ion etch-

:ng). These defects that are induced by radiation damage severly degradeI



tie structures ani ,leDiete netn ot ali momiie cartlers 1,v i[ermi levi ninninr .

Lt ;s curious that in spite oi tiis. ithographv ani post nrocessinR continue to

)e the preferred techniques ior fabricating siniie and few eiectron structures 3
Which must accomodate a precise number of eiectrons withia 1otolerance for

even one extra electron! In Fie. 10. one can see the virtually undisturbed I
attice planes in most particies. Only one particle in this melee has a stacking

;ault that is visible. The material quality is astoundingly good and shows

few. if any. dislocations. We beiieve that the Selective Area Nano Deposition

'K-%ND) technique. ',%nich we nave proposed, is the ideai technique for making

:Itrasmaii structures wtn -- -0 resolution in ail three uimensions. 1: may

ndeed become Ohe dominant tecnnique for nanofabricarlon in the future. I-
I
I
I
I
I-
I-
I
I
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V. COMPARISON WITH EXISTING AND
- OTHER PROPOSED TECHNOLOGIES

I ::1 this section. ,o will comDare our proposea computing technology with

I o'xisting and other proposea technologies. To do this. we first provide an

t'stimate of the figures of merit for singie electron logic chips.

I Estimation of the switching speed, power dissipation

I and allowable bit density

.ii singzie elec-ron .0Q!c. ,. •)it ;s .wltched by ;lipping an eectrons -:)n.

-his is achieveo either rfy iocaliv applying a magnetic field (during writing) or

I w %magnon coupling ,iuring computation). In the former case. the switching

time will be of the order of ,'/9kB where B is the flux density of the iocaily

I applied field. y is the g-factor which can be very large in some semimagnetic

semiconductors) and 0B is the Bohr magneton. For a flux density of I tesla

I and a g-factor of 10. the switching time is - I picosecond.

Hi the s-econo case. magnon coupiing flips the spin of an eiectron by

,mitrning a phonon. ".pin-Ptnonon couDiing can be quite .trong !n pyroeiec-

I "nc materiais i uniaxiai crvstais without inversion symmetry ) where electric

dipole spin resonance'js.6 can increase spin flip rates significantly. In some

I materials like HgTe. spin-pnionon transition linewidths of 0.4 meV have been

predicted"7 which gives a switching time of - h/O.4meV ; I picosecond.

I The power dissipation for switching a single bit can be estimated as fol-

lows. If the energy splitting between the triplet and singlet state is iOO

I nmeV and the switching time is I picosecond. then the power dissipation for

switching a single bit is 1- 00 meV!/1 picosecond = 16 nanowatts. This is a

few orders of magnitude smailer than what can be acheived in conventional

I ldevices. The power delay product is then -, 10- Joules which is of the

same order as that achievable with quantum interference devices. It is orders

!90
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. manituue smaiier than .%nat can n,, acnieve(1 with conventional lJevices.

Anciuding josepnson junctions.

\ext. we caicuiate the nit density mat can be realized. Each nanoDnase 3
:,articie (o- each t)itt occuDies an area of -- 0 x .50 A-. Therefore. the bit

densitv will be - 25 terabitslcm*. Such a high bit density poses a problem 3
"Vith cooling. Since the power dissipation per bit is 16 nanowatts. the maz:-

mum power dissiDation from a I cmr' chip will be - 400.000 Watts! Removal I
.,f "000 \V/crn from a silicon chip was demonstrated more than ten years I

:Zoi ,and :t may )e possibie 'o imorove inis. However. acquiring a capabil ity

. i --movinz 100 ,i~owatts/cm- -a room temperature wiil not rne easv. I ;isi

:)roolem can of course be eiiminated aitogether by reducing the operating

'emrerature trom room temperature to 77 K. The device sizes can then be

increased to reduce the energy splitting between the triplet and singiet states

,energy difference between logic levels) to 10 meV. This is still larger than U
the thermai energy kT at 77 K and therefore allows 77 K operation. Also. at

77 K. the phonon assisted spin flip rate i switching speed) may decrease by

a factor of 10 sincc phonon assisted scattering rates are proportional to the 3
.3ose-Einstein tactor which nas an exponential dependence on temperature.

This reduces t he p•ower dissipation per bit by a fact,,:,r of 100 thcrcbv rcducing

the total dissipation to 4000 Watts/crn' which is more manageable.

It must be emphasized that low temperature (77 K) operation is not re- I
quired because of device or circuit limitations. Rather. it is required because

current heat removal technology cannot perform at the required level. Once

heat sinking technology has improved enough, room temperature operation

can be restored.

We now compare our proposed technology with both other quantum de- 3
vice technologies and conventional technologies. I

I



Comparison with quantum devices

It has been pointed out several times". 12'13 that quantum interference

I ievices are impracticai for integrateo circuits. Fhis is because their charac-

3 teristics are extremely sensitive to a few angstroms variation in size. or a few

millivolts variation in voltage, or a few nanoamperes variation in current. Be-

5 cause of the lack of fabrication tolerance. these devices are not reproducible.

Consequently, they cannot be used in integrated circuits where hundreds

-A- millions of devices must be fabricated reproducibly with reasonably high

:'in addition to having no fabrication tolerance. quantum interference de-

Vices also have practic'Ily no noise tolerance. Such delicate devices cannot

work in integrated circuits where voltagc variations will inevitably occur

3 owing to reflection, attentuation and distortion of signals communicated be-

tween various devices.

There are some other fundamental shortcomings of quantum interference

jevices. For instance. -he lack of non-iinear operating characteristics i the

I ,ny exception is the resonant tunneling devicet and the lack of intrinsic

device gain make these devices totaily unsuitable for digital and logic ap-

plications. Finally. the extremely low current carrying capability (quantum

devices must operate at low currents to avoid dephasing interactions) causes

these devices to be actually quite slow in their overall switching response (~

3 100 psec), sometimes slower than even conventional silicon devices.t

Granular quantum devices whose switching relies on the transfer (usually

,via tunneling) of one or a few electrons from one region of space to another

are often worse than quantum interference devices. Examples of these de-

I vices are the single electron transistor based on Coulomb blockade and the

scheme in Ref. 23. In addition to having most of the disadvantages of quan-

tum interference devices. they also have the additional disadvantage of being

I |
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t 'rpmeiv <low in thleir resDonse. •he -'itchiniz ýpeeQ s de~uCeO (ramati- 3
-'aiV by lack of toierance to trappngpn In (CDs. trapping is known to cause

-witching oelavs of I Ps - typicaijyv. resulting in an extremely slow nit rate

,)1 1 Mbit/sec. In single or few #.ectron devices. the problem is bouno to be

worse since the charge packets are extremely small (one or a few electrons

_nstead of about 10.000 in conventional CCDs). Therefore. no single etectron

,ievice should ever rely on charge transfer for switching. Our single eiectron

.:evice does not rely on such charge movement.

"-Inaiiv. aimost all quantum (ievices i with the sole exception o0 risoriant

". inneiinz devicesi niave a zerious ,rawbacK. Thev cannot operate even at

-7 'K. let alone mom temperature. This feature makes them impractical. In

contrast. our devices can operate at room temperature. I

Comparison with conventional technologies 3
Conventional technologies including bipolar junction transistors , BJTs

;,no HBJTs). complementary metai oxide semiconductor field effect transis-

",ors i C.MOS). Josephson junctions. magnetic bubble memory. etc. hiave their 3
fwn limitations. It is beiieved that the major problems of BJT ano NIOS

recr ogy are associated with scaiini Power suppiv voltages cannot be I
,caled down indefinitely. The minimum thev can reach is the thermai volt-

age oeiow which the noise margin becomes unacceptably poor. When device

sizes are scaled down without scaling the voltages, the electric field reases

proportionately with decreasing length. Ultimately, the electric field will

reach the criticai value for breakdown which sets a limit to device scaling.

The product of the power suppiy voltage and the unity gain frequency in

conventional devices cannot exceed Fm.vm. where Fm,, is the breakdown 3
field and v,,,m is the saturation velocity at that field. This is known as the

Johnson limiM]t and -, has never been surmounted. For silicon. this hirmts I
,he maximum unity gain frequency to 2 x 1,0" I1z and the switching speedi
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0o osec if he ',oitage is I .-o:t. . ;5 a tiunaad e ti r inateriai li tt antu

I o amount of clever irnovativeness can surmount It>7. Fheretore. it lecomes

niecessarv to expiore aiternate means of realizing ultratast and iitradense

computing devices.

We now examine our proposed spin polarized single electron logic devices.

The advantages of these devices are the following:

* The devices can operate at room temperature.

e The devices have tabrication tolerance. The size and shaoe of the

-articles are noi riticai as o.nr as the particles are smail enougn to nost

single electrons. In fact. even singie electron occupancy :s not reaily

necessary. .\ll that is required is that the particles have a resuitant

spin moment determined by the interplay of Coulomb, exchange and

correlation forces. The spin moment must also respond to rnagnons.

@ The eztrmnszc switching speed of a device is -- I psec. ",uch ultra-

Iast switching is made possible by the fact that no charge movement

I is necessarv so that we are not limited bv transit time or resistance-

capacitance tRC) time constants. Ihis switching speed is better than

that of quantum interference devices, far better than that of granuiar

electronic devices relying on charge transfer. and comparable to the

3 switching speed of the highest performing conventional devices such

as complementary metal oxide semiconductors (CMOS) and Josephson

junctions 9.

* The power dissipation is only tens of nanowatts per bit which allows

extremely dense integration. The power delay product is ,-- iO-'° Jouies

I which is comparable to that of quantum interference devices.

3 * The logic variable is spin which is a robust physical variable and is

practicaily immune to electrical noise!. Therefore these devices can

I 33
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I
.iperate ;'.% t ri ext neiV \ iim in oise i:arii uiIl '0[1 aU iia IL. I
M %lemorv elements are non-volatile. basicailv tor 'ne same reason that

Magnetic nubbie memories are non-volatile. Once -ne tpin ut a particle I
has been oriented. it remains in that contiguration unless perturbed by

a magnetic field.

* Memory can be extremely dense -- 10 Terabitsicrn). However. this I
iensitv may not be achievable immediately because of limitations im-

:)osed yv bhe maximum ob'anable rate of heat -emovai from a chip.

i i; ,iijec:, ,ic ::me:Tior', ,itens v ;6 i:irthier *'nnanceu uv .rcuit rn- I
paction in conve'ntionai circuits, at least !our transistors are requirea

"o make a iatcn for _storing a single bit. Here. a single electron can store

a singie bit. I-
e The architecture !s interconnectless with interconnection between de-

vices provided by quantum coupling. This removes the major hurdle

to miniaturization. I
* >ince ail iogic devices are in the ground state. we do not need frequent

refresh cy/cles. 'onventional devices aiways operate in excited states

and therefore reouire constant input and refresh cycles through indi-

vidual address lines and interconnects. \Ve do not need these cycles 3
which eliminates SO 'A of the energy requirement.

The above are some of the major advantages of the proposed technology.

Needless to sav, they are so attractive that the scheme merits a thorough

•iheoretical and experimental investigation. The rewards of such an endeavor

mav be well worth the effort.

I
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* VI. CONCLUSION

In conciusion. wxe have proposed and described a novel quantum technoi-

,igy for uitratast. 1jitraaense ano ultra low power supercomputing. It utilizes
single electrons as iogic devices in a quan-um coupled cellular automatd ar-

chitecture. For fabrication. we have proposed a new technology t SAND) and
a new kind of material system i nanophase materials) which we believe are

ideai for atomic scale iuanofabrication.
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FIGURE CAPTIONS

Figure 1: The potentiai prohie seen by two electrons in two isolated

ianophase particles. 'he confining potentaia is assumed to ne rectangu- I
.ar for convenience. The basic property that the spins of the two electrons

are antiparallel (in the ground state) does not depend on the potential shape.

However, the splitting between the singlet and triplet state (or the exchange

energy J) depends on the potential shape. the wid, of the wells and the

heiegit of the potential harrier that separates them.

Figure 2: .\ nanophase reanization ot an INVERTER iNOT gate). The spin

ctate ilogic leveit in one particle is the inverted version of the spin state or

oio0c level in the other. 3
Figure 3: A nanophase realization of (a) a NAND gate. and (b) an AND

gate. Also shown are the four possible spin configurations of the array which

correspond to the Boolean truth ta..,e.

Figure 4: .-A nanophase realization of (a) an OR gate. and ib) a NOR gate. -

Figure 5: A nanophase realization of an exciusive OR gate.

Figure 6: 1 a) A realization of a binary half adder using exclusive OR and

AND gates. , b) a nanophase realization.

Figure 7: (a) A realization of an SR flip flop using NAND gates. tbi a

nanophase realization.

Figure 8: Reading the spin of a nannophase particle using a SPSTM. The I
tunneling current measured by the SPSTM tip depends on the relative spin

poiarizations of the tip and the particle.

Figure -t: An example of failure due to the lack of unidirectional isolation I
between input and output. ja) The equilibrium configuration of electron

A A
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n-pinsfllogic states i in two •'()T gates in series, bp FHe iovic state at ;nput ot

-he rirst NOT gate i left ceilb is cnanged by an SPSTNI external sourcei, but

"'he state at the output. does not change in response oecause ot the previous

-tate at the output of the second NOT gate. The failure occurs because

I ota lack of unidirectionai isolation between the input and output. (c) A

possible solution. The left ceil is closer to the central cell and therefore holds

dominant sway.

I Figure 9: Schematic layout of a single electron logic chip. The packing is

!ense at the center and *-narse at the edges where the reaoing aUO xriting

.Derations are done.

I Figure 10: A TEI micrograph of nanophase particles of ZoO. The parti-

ides aie unpatterned and form a dense random array. The average particle

size is 90 .A. The virtually undisturbed lattice plaies are visible and show

3 practically no crystal defect in most cases. Note the uniformity in size and

"the astounding material uualitv.

I Figure 1: Figure illustrating the three steps in the Selective Area Nano

Deposition procedure.

I
I
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I
Abstract- In this paper we report the experimental invesugation of the density of patterns

I exposed with electron beam lithography (EBL). A linear relationship was found between the

I minimum width of PMMA walls and the given resist thickness (height of the walls). Below the

minimum width, PMMA walls become wavy or fail due to the internal stresses caused by

I PMMA swelling during development. Previous research pertaining to proximity effects at

reature sizes and spacing below the 0.25 um range is limited. We have experimentally

I nvestigated proximity effects in very high density gratings in the pitch range from 50 to 330

i m. The relationship between electron beam dose and grating pitch, where proximity effects

dunng electron beam lithography play a major role, was achieved. By fitting the experimental

results with a triple Gaussian model, the contributions of the different electron distributions in

proximity effects were determined. It was found that fast secondary electrons dominate the

I proximity effects in the range we studied and they limit the density of patterns fabricated by

I EBL.

I
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1. INTRODUCTION

The taun'catio n of nanostructures. and in particular quantum devices, depends on the I
resolution and achievable pattern density of lithographic techniques. In electron beam

lithographv (EB-), the lithographic resoiution relies on that of the electron beam generator and

.he *.ntrast of the resist/developer system. Poly (methyl methacry late) (PMMA) is still the most

popular choice of resist for nanostructure fabrication because of its extremely high resolution.

In uie lift-off process commonly used in nanofabrication, PMMA exposed with an 1
electron beam is followed by a develop step, after which the unexposed resist remains on the

substrate and acts as a shadow for metal evaporation. For very high density patterns, the

-emaining PMMA is in the form of a thin wall between the developed lines, which serves as the

spacer between deposited metal lines. Although PMMA is usually considered to be a non-

swelling resist, accounting partially for its high-resolution properties, some absorption of I
developer is necessary to aid in the development process [1]. A very small amount of swelling

can induce internal stresses in thin PMMA walls which weaken its mechanical properties and

cause the deformation of thin resist walls dur:-,g development in the fabrication of very close

lines. In the limit of very high resolution lithography, lines are placed so closely together that

the resist walls can either become wavy, fall over, or fail completely [2,3]. Therefore, the I
buckling of the PMMA walls limits the ultimate density of patterns in the EBL process. Al-

though Chen (21 predicted that the limit of line pitch is - 75 nm, our results show that for 100-

nm-thick PMMA walls, PMMA can be as narrow as 20 nm without resist failure (31, resulting

in higher density than expected by them. Sub-50-nm pitch semiconductor-metal photodetectors

have also been achieved by Chou et al. (4]. I
Another serious limitation on very high density patterns with electron beam lithography

is the proximity effect. This is due to the distribution of the primary electron beam, forward

scattered electrons, secondary electrons scattered in the resist film on the substrate, and

backscattered electrons from the substrate. It is important because those scattered electrons

expose regions of the resist that are not originally written by the electron beam. For the sche-

matic grating shown in Fig. la, the electron beam exposes the pattern on each line. In the ideal
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I case, the resulting energy distribution in the resist is very spatially confined (Fig. lb).

However. the actual energy distribution for very high density gratings is less distinct (5], as

shown in Fig. 1c. and proximity effects decrease the modulation transfer function of the expo-

sure for closely spaced patterns. (The modulation transfer function (MTF) is defined in Fig.

1 c.) Assume the peak dose received by each line is E, and the lowest dose received at the areas

I between lines is E,,. The resolution of gratings depends on the capability of a given developer

I to distinguish between E,, and E.. The distribution of electrons in e-beam lithography is

complicated by the fact that it depends on almost all parameters in lithography, e. g. accelerating

I potential. beam size, photoresist thickness and type, and substrate properties. Investigations of

:he energy distrbutions have been reported elsewhere (5-10]. A double Gaussian model has

I mnostlv been used for the electron distributions (5,6,11-141. Computer aided proximity effect

:orrection and other methods reducing the proximity effects during e-beam lithography have

been pursued [15-20]. The feature size and spacing in most of the published work are in the

I half-micron regime, which is quite useful for fabricating ULSI circuits. In this case,

backscattered electrons dominate the proximity effects because of the typically low beam

I energies utilized (- 25 keV). The width of the backscattered electron distribution is in the order

of the feature size and spacing. However, previous research pertaining to proximity effects at

I feature sizes and spacing below the 0.25 um range is limited [9-11].

In this paper, we report the experimental investigations of the density of the electron

beam lithography limited by the physical strength of PMMA and proximity effects. Proximity

effects in very high density gratings were experimentally studied in the pitch range from 50 to

I 330 nm. We will discuss the relationship between electron beam dose and grating pitch, where

proximity effects during electron beam lithography play a major role.

II. EXPERIMENTAL PROCEDURE

""IThe EBL system used in this study consisted of an Amray 1400 SEM with a maximum

I beam energy of 50 keV and a minimum beam width of 5 nm using a W cathode, controlled by

an IBM PS/2 personal computer interfaced through a Pragmatic Instruments 2201A 16-bit

I 3
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arbitrarv waveform generator [211. Special care was taken to minimize all noise sources.

PMMA (950.000 a. m. u.) was spun on Si and SiO,/Si wafers and baked at 170'C for 4 hours. I
Mlixtures of methyl isobutyl ketone (MIBK):2-propanol (IPA) (1:3) with the addition of I% and

5 % methyl ethyl ketone (MEK) by volume, were used to develop samples. This mixture Y,'as

been shown to have very high development contrast properties [22]. For both the experiments

on proximity effect and the strength of PMMA, different process parameters were used. A sum-

mary of the experimental parameters is given in Table 1. The resist thickness in the proximity I
effect measurement was kept to )0- 70 nm in order to avoid PMMA failure during the processes.

Gratings with different pitch in the proximity effect experiments are 3 um x 3 pm in size and

.eparated by 2 rn with each other in order to eliminate the proximity effects caused by the

,.-ttered electrons from adjacent gratings [23]. I
IH. RESULTS AND DISCUSSION

\. Strength of PMMA

In order to achieve lift-off of evaporated metal films, it is necessary that PMMA walls

remain between the developed areas. The width of PMMA walls was determined by measunng

-1he spaces between resulting metal patterns after lift-off. The undercutting for thin resists was

nealected because it is small for thin resists and high beam energies. The height of the walls

after development is assumed to be the same as the initial resist thickness because the unexposed

PMMA of very high molecular weight has very low solubility [221. One might suppot that in

the case of high density gratings, areas between lines might be partially developed t iuse of

proximity effects. For grating pitch larger than 70 nm, we find in the next section that EE,,

< 0.6. For the developer with contrast, -'*, larger than 10, the amount of the resist that is

removed through developing is small compared with the original thickness of the resist, and

therefore can be ignored in the final resist thickness determination.

PMMA can be considered a strong, glassy material after baking. Howe\,er. dunng

development, the absorption of the developer causes swelling, and internal stresses e,'It in the

deformation of PMMA walls. The wall aspect ratio (height-to-width) is an importai.t, -rameter



in delineaung the stability threshold, since a tall. thin wall will be strongly susceptible to small

I dimensional perturbations around the erect position. while a short and thick wall will be able to

sustain a higher degree of swelling before buckling.

Figure 2 shows experimental results of the minimum width of a PMMA wall achievable

tor a given starting resist thickness. Error bars rcpresent vanations in metal line separation (and

I therefore wall thickness) over the length of the lines. These data were obtained by smoothly

I varying the line pitch for a given resist thickness and observing the point at which lines either

failed completely or became noticeably wavy. The data indicate a direct proportionality between

critical wall height and width, implying a constant aspect ratio for buckling. The area above the

,ntical line is the regime in which straight PMMA walls can be achieved. The area below it

is the regime in which the walls become wavy or fail.

The stability of an infinitely long wall of width, w, and height, h, with a rigidly anchored

bottom and a top free end can be modeled with linear plate theory [24]. The details of the

theoretical calculation are given in Ref. r251. According to this model, the critical wall aspect-

ratio for stability, (h/w)", is given as a function of the swelling strain:

I ).= ,,3(1)-

where P is Poisson's modulus and E,. is the hypothetical swelling strain that the wall would

undergo if allowed to expand freely. For (h/w) > (h/w)* the wall will buckle as shown in Fig.

3a. The bright areas in Fig. 3 are evaporated gold, and the dark areas are the areas where

PMMA walls stood before lift-off. Equation (1) predicts a linear relationship between the

critical wall height and width for a constant E,,, which is consistent with our experimental results

as shown in Fig. 2. From the slope of the line in Fig. 2. the critical aspect ratio for stability

Ican be calculated, giving (h/w)*=4.75. Then E.,.=5.1% for s,=0.5 from Eqn. (1). This indi-

cates that 5% swelling can lead to failure of PMMA walls with aspect ratio greater than 5.

In making gratings, a set of parallel PMMA walls forms during development. The

I 5
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buckling of one ef the walls can lead to the catastrophic failure of the whole graung, because

surface forces can induce cross-correiation between deformation of adjacent structures, producing

a pattern of adjacent sinusoidal waves 180" out-of-phase with respect to each other as shown in

Fig. 3b. Figure 3c shows a 50-nm-pitch grating with straight resist walls between lines.

I
B. Proximity Effects

Proximity effects must be strongly considered in the fabrication of very high density

patterns. It can be expected that when lines get closer together, the dose needed for exposure

should decrease because inter-line scattenng of electrons causes additional energy deposition.

Exprenmental results of normalized dose versus grating pitch are shown in Fig. 4 along with

theoretical simuiauons. In the figure, doses for various pitch values are normalized to that

needed for the same linewidth in the 150 nrn pitch grating. Three samples with different doses

and development time were measured. The data of all three samples are very consistent.

Besides exposure dose, many factors affect line width in experiments, such as contrast of

developers, developing time and temperature. Our results show that although line width may

change. with other factors, their effects on the relationship between normalized dose and grating

pitch are small and can be neglected. It can also be seen that normalized dose decreases slowly

with pitch unul about 100 nm when the change becomes rapid. As we will show, this effect is

due to the different distribut:ons of scattered electrons in the resist dunng exposure. Models of

the exposure energy distribution in the resist employed for fitting the experimental data include I
the double Gaussian [6]:

f(r) =• -+exp(--±-) + -exp(-L)1 , (2)
a 2  1%2 12 132

and the triple Gaussian model [9]:
1 2 2

[ eexp -- ) '.exp(----) -rLexp(-z-)]. (3)

I



I

I describe the pnmary beam and forward scattered electron distribution. The second term

•ccounts for the behavior of the backscattered electrons. The third term in the tnple Gaussian

model is added to describe all other exposures that are not included in the first two terms. The

third term may result from large angle forward scattered electrons, secondary electrons, or even

broad tails in the primary beam distribution [9, 101. The results of Monte Carlo calculations by

I Joy (5] and Murata et al. [7] clearly show broad tails to the energy distribution due to fast

i secondary electrons, which we will show play an important role in proximity effect calculations

over the spatial range discussed here. In Eqns. (2) and (3), a, ý, and -y are the widths of each

Gaussian distnbution, and 1 and 1' are the ratios of exposures of the second and third term to

:he forward exposure. respectively. According to Ref. [8], =10 &m and v=0.8 for 50 keV

I eiectrons in solid silicon substrates. c, yr, and 77' were chosen for the apparent best fit. The

i ,cashec line in Fig. 4 shows the calculation in which only the first Gaussian term, that is, only

the contribution of forward scattered electrons, was considered. Since the width of this term is

only a few tens of nanometers, forward scattered electrons only cause a short range proximity

effect and cannot change with dose over large pitch.

I When the second Gaussian term was added in the calculation (the double Gaussian

model), the weak change of dose over large changes in pitch (solid line in Fig. 4) was caused

ov the long range proximity effect of backscattered electrons. The small difference between the

cashea cur-e and the solid curve shows that the proximity effect caused by backscattered

electrorns dt 50 keV is weak. a =0.037 gm was used in these two curves. The dash-dot line in

I Fig. 4 was calcuiated with t,me triple Gaussian model. This curve fits the data very well with

u=0.029 jm. y=0.4 gim, and i' =0.35. We conclude, therefore, that the proximity effect from

the y-term electrons is very important in high density patterns in EBL. Since these electrons

cause proximity effects in a broad range relative to the forward sca.tered electrons, and their

sources are still not clear, we call them simply "broad range electrons.'"

I The ratios of the contributions of scattered electrons from the inter-line exposures to the

total exposure received by each line are shown in Fig. 5. The solid line, the dashed line, and

dash-dot line correspond to the inter-line exposure contributions of forward scattered electrons,

SII7
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-ackscattered electrons. and broad range electrons, respectiveiy. From Fig. 5, we see that for

:he inter-line proximity effects: (I) The contribution of backscatterea electrons weakly depends I
on the grating pitch because of their wide distrbution ( - 10 4m [8,261) at 50 keV. The back-

cattered coefficient is a constant for certain materals when the beam energy is larger than 20

ýeV [27]. Hence the intensity of the backscattered electron distnbution for 50 keV is much

.ower than for 20 keV because it spreads much further. Therefore, for high density patterns,

the proximity effect of backscattered electrons is like a weak background. It can be ignored in

!he total exposure because the contribution of backscattered electrons is less that, 2% and much

smaller than the contribution of the broad range electrons in the whole pitch range over which

Our calculations were performed. (i) The effect of forward scattered electrons is not important

unul mhe pitch of gratings approaches the width of its distribution. Their effect increases

iramatically when the pitch are smaller than 50 nm. Therefore, the proximity effect of forward I
electrons will limit the resolution of electron beam lithography. (iii) Broad range electrons

dominate the proximity effect in the pitch range from 50 to 350 nm or even larger in our exper-

ments. This range is on the order of feature sizes of quantum devices and ULSI circuits. There-

,ore it is very important to include this term in the proximity effect correction. Since the

coninbution of the broad range electrons to the total exposure is larger than 20% when grating I
Ditch are less than 50 nm. their limitation on the resolution and densitv of e!ecrron beam

ithographically defined patterns cannot be ignored.

We further consider here the role of fast secondary electrons in proximity effects. Fast

secondary electrons have a complicated distribution; it is a narrow peak with a wide shoulder

[5,7]. The width of the narrow pcak is about 10 nm in free standing resist. Its role in prox- -

imity effects was included in the forward scattered electrons [5] which are described by the first

term of the double or triple Gaussian models. However, the proximity effect caused by the wide

,houider was neglected by previous researchers. From [5] we note that me half width of the

shoulder is about 100 nanometers and is on the order of the distribution of the broad range

electrons. Therefore, it can be concluded that fast secondary electrons are part of the broad I
range electrons, but they are not the only part. Therefore, the fast secondary electrons introduce



-oth short and long range proximity effects, and thereov limit the resolution of EBL.

"",\s mentioned above, the tot dose at the region between the electron beam scanned areas

.rncreses when lines are placed closer together. The resolutiuri of gratings created with EBL

depends on how well a developer can distinguish between the deposited energy densities between

lines and at the lines, E, and E_ respectively. Fig. 6 shows EiJ as a function of grating pitch

with different Gaussian parameters. The dotted line results from the double Gaussian model

with the same parameters used in the calculation of Fig. 4. For 50-nm-pitch gratings, the ratio

L/E,' is about 0.98. This small difference between exposure energies cannot be distinguished

with any practical developers, in contradiction to the experimental results. T"erefore. although

the double Gaussian model can be used to qualitaauvely simulate the normalized dose changing

with grating pitch, it fails in predicting the density and resolution limitation in electron beam

lithography at these very small dimensions. Ilie solid line is calculated with the triple Gaussian

model with the same parameters that fit the experimental data in Fig. 4. It can be seen that

E,/E-approaches unity when the grating pitch decrease. EJ/E, = I means that the grating patterns

are completely washed out because of the proximity effects. For 50-nm-pitch gratings,

I-,,"Ep =E 0.87. The contrast, -y*, of our developer (1.5% MEK) is larger than 10 and corresponds

to D:;Df=0.8 [22], where D, is defined as the critical dose below which the resist is not

developed at all. and Df is the dose above which the resist is totally dissolved. (Note that the

I xposure energy, E, is proportional to the received dose, D, so contrast curves yield useful

information about the limits on absorbed energy.) The resist will be partially dissolved when

the dose ;s less than Df, but greater than Di. This means that the height of the PMMA walls was

decreased for 50-nm-pitch gratings dunng development because of partial developing. Since the

initial PMMA thickness in our case was 60- 70 nm, the height of remaining PMMA walls is

assumed to be larger than 40 nm, which we have found is sufficient for good lift-off of 15-nm

metal patterns. This also shows that the development is very cntical in making very high

density patterns; a slight over-development may cause the PMMA walls to be dissolved.

From Fig. 5, we saw that forward scattered electrons, including fast secondary electrons,

cause the proximity effects to dramatcally increase when grating pitch approach a, the width

I 9



t. .he distmbution of forward scattered electrons. Thus the resolution of EBL can be improved

.k nen co decreases. This is clearly s,-own bý i ie dashed line (a,= 20 nin) and the dash-Got line I
*:. = 10 nm) in Fig. 6. This requires using a very high energy system with a non-Gaussian-

Žnaped beam or a resist that depends less on low energy electrons in forward electron

scattenng. Assuming c= 10 nm for a very high resolution electron beam, a grating with 20 nm

pitch can be expected using a developer with the contrast -y*= 10, as shown in Fig. 6. This

-tees with predictions of Joy [5] that 10 nin represents the ultimate resolution for PMMA as I
ectron beam resist. Our results restate those of Joy that the narrow peak of the energy

,eposited by secondary electrons is practically flat out to a distance of 5 nm. and therefore so

.ow in contrast (over the peak) as to be indistinguishable to developers with reasonable contrast 3
aiues.

We saw that the pattern density is also limited by ihe failure of PMMA walls. As

discussed above, the lower the achieved thickness of the PMMA walls, the closer is the

achievable line spacing. However, the resist thickness cannot be lowered arbitrarily because,

:or good lift-off, the resist thickness should be about 3 times the metal thickness, which depends

on the ultdmate desired device characteristics. According to Fig. 2, 10-nm spacing between

:rnetal lines can be achieved with 40-nm-thick PMMA, and is sufficient for successful lift-off of I
'0- to 15-nm-thick metal lines. Therefore, we conclude that the limits to the density of metal

ý:nes due to the proximity effect and the strength of PMMA walls are consistent for the

achievement of lines with pitch as small as 20 nm. 3

IV. SUMMARY I
The proximity effects in electron beam lithography were. experimentally investigated with

different grating pitch. The results were successfuliy simulated with a triple Gaussian model.

Proximity effects caused by backscattered eiectrons were insignificant in our be ,ecause of

,heir wide distribution. Forward scattered electrons were very important when the grating pitch

were about the width of this electron distribution. Broad range electrons, described by the third

term in the triple Gaussian model, dominate the proximity effect in the pitch range from 50 nm
I A



to 350 nm. Secondary electrons cause both short and long range proximity effects. Their

.rfects can be included in forward scattered electrons as well as broad range electrons. Their

rimitation on the EBL resolution cannot be ignored.

Upon exposure to suitable solvents, such as common developing and rinsing solutions,

narrow PMMA wadls were found to become unstable as a result of two effects: (1) swelling,

and (2) lateral surface forces between adjacent structures. We investigated the relationship

Ietween minimum line spacing and maximum PMMA thicimess for EBL fabrication using a high

contrast developer. We also showed experimental evidence that supported our predictions, thus

uemonstrating the existence and seventy of such instabilities in nanolithography.

From our calculation of E,/Eý as a function of grating pitch with the triple Gaussian

model, a 20-nm-pitch grating can be expected using a very high resolution electron beam

generator and high contrast resist/developer system. The closest spacing between metal lines

can be as narrow as 10 nm for 10- to 15-nm thick metals, implying that 20 nm gratings with 10-

nm line width and 10-nm line spacing are achievable.
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Figure Captions

Fig. l . Exposure energy distribution in very high density gratings. (a) Schematic of the I
beam scan for a grating. (b) Energy distnbution in the near ideal case for the beam I
scan shown in (a). (c) Actual energy distribution in very high density gratings.

Fig. 2. Minimum width of PMMA walls achievable versus starting resist thickness (wall

height).

Fig. 3. Remaining metal patterns after lift-off. (a) Failure of parallel lines caused by wavy I
PMMA walls between them. (b) A typical failure of gratings resulting from PMMA I
wall swelling and buckling. (c) A 50-nm grating with straight PMMA walls between

.ines. Light areas are gold. and dark areas are the shadows of PMMA walls which

have been removed dunng lift-off.

Fig. .l. The relationship between normalized dose and grating pitch. Doses are normalized I
to the dose required for the same line width at a pitch of 150 nm. I

Fig. 5. Inter-line proximity effects caused by scattered electrons versus pitch of gratings.

Fig. 6. E,'E, versus grating pitch. E, is the lowest exposure energy received in the areas

between lines. E, is the maximum exposure energy received by each line.

I
I

I
I
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Table 1. Experimental Parameters.

Experiment Proximity effect Strength of PMMA

Patterns Arrays of gratings Two prallel lines
or gratings

Line Pitch 50 - 330 nm 70 - 150 nrn

Accelerating Voltage 50 kW 45 kV

Resist Thickness 60 - 70 nm 105 - 180 nm

Developer MIBK:IPA:MEK MIBK:IPA:MEK
=1:3:0.06 (1.5% MEEK) =1:3:0.04 (1% MEK)

Developer Temp. (°C) 26 25

Developing Time 6 - 10 seconds 15 seconds

Metal Thickness 15 nm 30 nm

15



I
I
I

(a) 3
I I

Electron Beam Scan

LIJ

& I

Distance ,

I
I-

EI

FEp - Ev,,uMTF -I

EP+ Ev

Distance I
I



I

I __ _ __o_ _ __ _ _ _ __ _ _ __ _ _ _

STABLE

. (STRAIGHT WALLS)

30

I U.

20

", ~UNSTABLE

10"
* /(WAVY WALLS)

0 20 40 60 80 100 120 140 160 180 200

Critical Height [nmj

JI1



I
I
I
I
I
I
I
I

(a)

I
I
I
I
I
I

(b)

I
I
I
I



I
I
I
I
I
I
I
I

(c)

I
I
I
I
I
I
I
I
I
I
I



I
I

LI

, - o

x, 0, + Experimental data
0.81/I

-- -o..... Only forward electron- I
0.7:- Double Gaussian model

S0.6 •....... rTriple Gaussian model

0.51 j
0.4'

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Pitch of Gratings (gm)

I
I
I
I

II



0.3f

0 ~Forward electrons

I 0.25

-0.2

U5 - Broad range electrons
0

--. •• -. . akctee lcrn
-= 0.2500.3 0.3

1 1

I0
Iu

o 0.I0'i

i • .... catter d ..........

-0 0.05 0.1 0 .15 0.2 0.25 0.3 0.35-

S~Pitch of Gratings (jum) "

no uge



I

III

.=10 gm, TI=0.8

0.8 Double Gaussian 1
COL=0.037 pm

Triple GaUsSianz
0.6 a=0.029 pm I
. ........ (x=0.02 pm

0.3 y,0. 4 pM n'=0.35

0.05 0.1 0.15 0.2 0.25 0.3 0.35

Pitch of Gratings ( Pm) 3
I
I
I
I
I
I
I
I



Electron Beam Lithography Over Large Scan Fields

Greg Bazan r and Gary H. Bernstein
Deoartment of Electrical Engineenng

University of Notre Dame
Notre Dame, IN 46556

Abstract - We have develooed an advanced, research-oriented electron beam

I .ithography system using a 3 channel arbitrary waveform generator and a scanning

electron microscope, The system is capable of exposing patterns with features less

I *nan 100 nm over scan fields greater than 1.0 mm, as well as features iess than 20

irn ;n smaller scan fields. Other system features include capabilities for registration

I and for generating exposure matrices for evaluating new electron beam resists and

optimizing exposure parameters. We report the details of the system and show

results made possible by our system.
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Introduction

--or more than a aecace, ntense erfort ias Deen put towards the construction of U
dimensionaily confined systems for the study of quantum effects in mesoscopic

structures (1. To this end, sImDle aevices have been constructed using processing

methods similar to those used to fabricate GaAs MESFETs. To study quantum

effects, minimum feature sizes within these structures must be less than 1 .m. and

often less than 100 nm [2-4]. Several approaches for fabricating structures with

features less than 50 nm have been implemented [5-7], but none combines the

versatility and resolution capabilities of electron beam lithography (EBL) systems. X- 3
,ay lithography systems are capable of such resolution but are not readily available.

Some commercial EBL systems have the resolution necessary to produce the

required sizes yet are not readily available due to the their cost. Using scanning

electron microscope (SEM)-baseo EBL systems can provide a low-cost, versatile,

research exposure tool whose only disadvantage is throughput. Other cost effective 3
methods include the modification of scanning tunnelling microscopes (STM) (8], but

this technology currently is limited by the overhead exposure time and the small

exposure area.

Several EBL system designs have been implemented and described by others

'9-20]. However, our work extends the utility of this technique into the regime of very

large scan fields with nanometer resolution. Our motivation behind the development I
of this system was the ability .o fabricate nanostructures and nano-devices

incorporating all exposure steps (mesa, contacts, gates, bonding areas) into one tool

as well as gate level exposure for quantum based circuit architectures (21]. Also

recent optical experiments require nanostructures in large scan fields due to the

difficulty in focusing lasers onto small areas [221. We designed our system with three 3
specific goals. The first was to build a system capable of exposing any arbitrary

pattern with a resolution less than 100 nm over scan fields as large as 1.4 mm. The

second was to alloy, the exposure tool to perform accurate pattern registration of 100

nm over scan fields as large as 1.4 ram. Finally, the system was designed so that I
I



:mrnujative exposure oarameters couia oe storec *cr 'uture analysis and images

I rintea ana savec easiiy.

The most common method usea to convert an SEM to an EBL system

ncorporates a computer fitted with two digital to analog converters (DACs) whose

outputs are connected through amplifiers to the SEM scan coils. More sophisticated

I conversions involve computer controlled beam blanking and stage movement.

Nabity and Wybourne [9] give an especially thorough review of the design issues

:nvolved in an SEM-basea EBL system. In all cases, the computer controls the beam

I osition by the application of voitages via the DACs. Ideally, the beam position

resolution of these DAC-based systems is stnctly iimited Dy the DAC resolution.

Earlier assigns used 1 2-bit DACs wnhie most current systems use 1 6-bit DACs and.

oresurnably, future systems will have even higher resolution. When 16-bit resolution

s used, the beam can be positioned anywhere on a 65,536 by 65,536 point grid. The

spatial resolution of this grid is determined by the SEM magnification. To move the

beam, successive positions in the form of digital integers or pixels are input to the

DAC at a predetermined rate calculated from the feature size, the exposure dose,

and the beam current. This rate is calculated to include the exposure time at that

ocation as well as any overhead time necessary to account for scan coil settling [9-

The minimum feature size of such systems is not only determined by the DAC

spatial resolution, but also by the temporal resolution. For systems with poor

temporal resolution, a low exposure dose can only be achieved by having fewer

pixels in an exposure to result in the desired dose at a given magnification and beam

current. In this case, if the pixel spacing is large compared to the beam diameter a

Id;screte pixel exposure will result. Therefore, if faster pixel outputs are possible.

pixels can be placed closer together on the gnd resulting in smoother lines, more

I uniform exposure doses, and improved overall performance.
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System Overview 3
Control of the lithograpny system is acnieved through an n-nouse sottware

program [23] written specificaily for electron beam lithography. The orogram we 3
developed is capable of generating two types of files: layout exposure and alignment

(registration). Each file must be assigned a magnification which is used to determine

the scan field by the relation that an SEM magnification times the scan field equals a

system constant. Our system constant has been set at 140,000 where the scan field I
is in units of microns. Having such a large system constant allows for the possibility

!o expose patterns over 7 mm. Both files allow for an exposure to occur only if the

oeam current and dose are specified. A layout file can consist of dot, line, and area

exposures defined as a set of primitive shapes. Currently the set of shapes includes

dot grids, angled lines, gratings, grids, rings, rectangles, parallelograms, and 3
triangles. The registration process involves continuously scanning or imaging any

features designated as the alignment marks. These features must be positioned at

the corners of a rectangle so that adjustments can be made to reduce rotational,

horizontal, and vidstical overlay errors as well as to select the correct magnification. U
These marks are scanned simultaneously or individually through a window whose

size can be vaned to improve the alignment precision. I
A complete schematic aiagram of our lithography system is shown !n Fig. 1.

The lithography system is controlled by an IBM PC Model 30/286 (24] equipped with

a 32 megabyte hard drive, 4 megabytes of RAM, a He' 1t-Packard GPIS interface 3
card, and a Computer Boards, Inc. CIO-DIO24 digital inputoutput card. The GPIB

)nterface controls the operation of the waveform generator and the CIO-DIO24 card

monitors the TTL channel synchronization outputs of the waveform generator and

controls the synchronization of the beam blanker. Connected to the computer I
through the serial port is a switch box used to direct information to a olotter for

;ayouts or to the SEM stage control system. The computer is also connec,,d to a

aserprinter to record SEM exposure parameters as well as the size and position of

exposures within a layout. Our SEM is an AMRAY 1400 with a 50 kV acceleration
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,otentiai, tungsten source, electrostatic beam olanker, ana a Robinson oacK-

I zcatterea eiectron cetector. Sucn a large acceleration potential gives rise to a wide

Dack-scatterea electron aistribution in the resist, thus reducing proximity effects

I juring the exposure of dense layouts (25]. The Robinson back-scattered electron

I etector is used during the registration process to image marks through the resist.

Also connected to the SEM is a Keithley 614 electrometer used to measure beam

i urrent collected in a Faraday cup mounted to the sample holder.

The beam position and blanking are controlled by a Pragmatic Instruments

I Model 2201A High-Definition Arbitrary Waveform Generator (AWG). Current

advances in waveform generation electronics (26, 27] make the use of a high

- "esolution AWG a superior choice for controlling SEM-based EBL systems. The

2201A is a three channel waveform generator with each channel capable of

generating a waveform with a maximum length of 65,535 samples and sampled at a

selectable rate from 0.!00 Hz to 2.000 MHz with 4-digit resolution. Each waveform

I sample has 16-bit resolution within a selectable voltage range from 0.01 to 10.2 V

I with 4-digit resolution. The selectable channel amplitude is extremely useful for

SEIMs whose scan amplifiers compensate for the size of micrographs. By scaling the

i :utput of the 2201A accordingly, the SEM scan amplifier ratio can be balanced

"esulting in a square scan field. Each channel also has a synchronization output

I TTL) which is used to monitor the end of wavefcrm generation, to provide the pulse

signals needed for registration, and to control the beam blanking. The three

I waveform outputs are connected to the SEM with channel 1 operating as a TTL

signal to control beam blanking, and channel 2 and 3 functioning as analog outputs

to control the horizontal and vertical beam positions. Channel signal outputs are

I eferred to as BBK. XSCAN, and YSCAN respectively, and channel synchronization

-outputs are referred to as BBKSYNC, XSYNC, and YSYNC, respectively.

The Quantel Crystal Digital Image Processor is used to capture video

information from the SEM. To capture images, the image processor requires video

nout as well as line and frame pulse signals. These pulse signals correspond to the

4



ena cf a nonzontat scan ana the eno of a venical scan resoectively. To capture an 3
mage. the processor synchronizes its capture rate to that of the iine and frame

oulses. When the lithography system is used in an imaging mode, the image U
orocessor receives line and frame pulses from the SEM and the scanned image is

aigitized. When the system is used in a registration mode, the processor receives

line and frame pulses from the 2201A (XSYNC and YSYNC) so that only the scanned

areas over the registration marks are digitized.

Layout Exposure3
'Ne have taken great care in designing an EBL system capable of large scan

'ieid exposures with nanometer resolution. For us, the pnmary issue for large scan

field exposures is the signal to noise iS/Ni ratio in the signals used to control the

SEM scan coils. Noise in the generated signal can result in a deflection of the beam

which depends on the gain of the scan amplifiers. In order to complete patterns in

large scan fields where the gain of the scan amplifiers is large, the noise must be

less than the minimum feature size desired. For example. in a scan field of 0.7 mm,

for a 30 nm feature to be exposed, the S/N ratio of the signal generator must be

g~aatar than 87 dO. 1~vt,-.,•a.Aly anaiy7ed tt•c scan coil signals at various points in

'he lithograohy system using a Hewlett-Packard 35660A dynamic signal analyzer

ana were able to improve the S/N ratio measured at the SEM scan coils from 78 d8

to 100 dB using proper shielding and grounding techniques (28. 29]. A 100 dB S/N

ratio represents a peak-to-peak noise signal equivalent to only 14 nm in a 1.4 mm

scan field.

Every stage of the system from the computer to the scan coils was modified.

Substantial modifications were required to eliminate signals emanating from the 3
filament current power supply. By isolating the supply from the scan coil electronics

oower supply, the S/N ratio improved by 10 dlB. The pnmary source of noise was I
,dentified as a ground loop problem resulting from the General Purpose Interface Bus

:.GPIB) connection between the 2201A and the computer. Two commercial GPIB

ootical isolation units were tested with no improvement noted. Therefore. a ground 3



I networK was designed ana implementec resulting in a 20 aB imOrovement in the SiN

I atio. Pig. 2 snows a line oattern exoosure cefore and after improvements were

made. For large scan fields, the SiN ratio becomes much more of a factor as the

noise in the scan coil signals directly correlates to an observable physical

ais0lacement of the beam as shown in Fig. 2(a). For small scan fields, the S/N ratio

I ecomes much less of a limiting factor.

Layout and pattern exposure require the user to specify a beam current and

magnification for the SEM, and exposure doses for the primitive shapes in the layout.

The layout is exoosed by programming the 2201A and CIO-DIO24 for each shape.

The shape exposure order can be changed before pattern exposure. First, the

2 2201 A is programmed with the necessary signals calculated to give the correct dose,

for a specific magnification and beam current. Because of the flexibility of the

2201 A, the shape algorithms are written so that the smallest time per pixel is

calculated, allowing the highest resolution waveforms to be generated. Before a

shape Is exposed, a channel is selected to trigger the output of the other channels.

The synchronization signal of this channel is then monitored by the CIO-DIO24 to

detect the end of shape exposure. The AWG is then set to be triggered through the

GPIB once the BBK circuit is programmed. The BBK circuit consists of fast !ogic

gates controlled by !he AWG synchronization outputs and the CIO-D1024. The CIO-

DI1024 selects which synchronization signals are to be used to control the SEM beam

blanker. Also, the CIO-DIO24 is programmed to monitor the synchronization channel

selected to signal the end of shape exposure. By continuously polling the CIO-

D1024 during shape exposure, the completion of an exposure is detected when a

logic LO is read from the triggering channel synchronization output.

The commands used to program the 2201 A to expose a horizontal rectangle are

shown in Table 1. YSCAN is selected as the triggering channel for BBK and XSCAN

signals. Fig. 3 shows an example of the wavoforms programmed to expose a

I onzontal rectangle from the instructions in Table 1. The rectangle is exposed when

YSCAN is triggered by the computer. As YSCAN is generated, when the second

I6
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-vaveform sampie of YSCAN is reached, 2BK and XSCAN are triggered. This

sequence guarantees that BBK and XSCAN are synchronized to YSCAN. The end of

the exposure is detectea by polling YSYNC through the CIO-01024. When YSCAN I
wavetorm output begins, YSYNC changes from logic LO to logic HI. At the last !
waveform sample of YSCAN. YSYNC changes to a logic LO signaling the end of the

shape exposure and the 2201A is programmed for the next shape exposure.

Use of the 2201 A allows us to minimize the total overhead time for an exposure,

as well as maximize control of exposure dose. Because SEM parameters such as 3
focus and astigmatism can dnft, large overhead times can result in poor exposure

.onaitions for complex, lengthy patterns. We have optimized the software for all line

types to take advantage of this property. When a waveform is calculated, the 2201 A

,s instructed to load its memory with the waveform samples. Next, a sampling rate is I
selected for each memory location and the waveform is then tnggered for output. Fcf

the next exposure, instead of loading a new waveform, the start and stop pointers in

channel memory are moved to correspond to the next exposure and triggered. With 3
the resolution and range of sampling rates, the exposure dose can be varied by 0.1 %

from one exposure to another. Such resolution is needed when attempting to

charactenze new resists and developer solutions as well as to optimize exposure

parameters. 3
Registration 3

We have developed an accurate technique for achieving pattern registration,

relying on the 2201A and the image processor. The 2201A is used to control the

acquisition rate of the processor such that only the information scanned from the

alignment marks is digitized. The synchronization signals of the 2201A are I
configured to emulate line and frame pulse signals with one frame consisting of 480

ines of video information. Shown in Fig. 4, our technique involves scanning one I
mark or scanning four marks simultaneously. The four-mark scan can be used to

correct rotational errors while single mark scans are used to correct magnification

errors as well as honzontal and vertical displacements. Once a mark has been 3



I

scanned, :he video :nformation s collectedl oy :he processor and aisplayea.

I Examples of single ana multiple mark scans are ;rovide in Fig. 5 The

superimposed dark areas in the scanned images are achieved through beam

I olanking and serve as guides during alignment. To improve registration accuracy,

*he size of the scan windows can be scaled, resulting in a magnified view of the

I registration mark.

I Results

We have tested our system in a variety of scan fields, exposing arbitrary

I oatterns with many exposure doses. Studies investigating the properties of PMMA

I 30, 31] and charges in oxides [321 have been performed using this system. For this

'.York, exposures were performed at 50 kV on thick silicon substrates with 100 nm

thick PMMA of molecular weight 950,000 a.m.u. baked for 10 minutes at 170 °C

using a hot plate. Development was performed at 210C for 15 seconds in a 1:3

I mixture of methyl isobutyl ketone " isopropanol with 1% methyl ethyl ketone [33].

Metal films of Au and Ti/Au were evaporated at normal incidence in an electron beam

I evaporator. Lift-off was performed by soaking in acetone for 2 to 3 minutes.

At conventional scan fields around 250 l.m 2 , dots approximately 13 nrn in

I diameter were fabricated [341. Some of our results demonstrating the flexibility of the

system, as well as resolution, are shown in Fig. 6. Fig. 7 shows the same line

pattern exposure at the center and top edge of a 1.0 mm scan field. Fig. 8 shows

,magnified views of the vertical grating and spoke pattern at the edge of the 1.0 mm

scan field demonstrating high resolution features in large scan fields. In Fig. 7(b), we

i see that the innermost nng is displaced in the vertical direction, which is an example

of the effects of scan coil settling. The inner most ring is drawn first in this pattern.

I Once the scan coils have settled, the remaining pattern is exposed without any

noticeable errors. Such errors are corrected by choice of pattern order and addition

I of delays into the 2201A programming sequence. To test line width vanation over a

. 0 mm scan field, the pattern in Fig. 9 was exposed. The line variation was

I estimated to be 5 nm for 65 nm wide lines. A more accurate investigation would

1
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I

require micrograprns with more aetail wnicn, at •is time. are currently not available. 3
To test the registration accuracy, the couble exposure pattern in Fig. '0 was used

with our best results shown in Fig. '1. We believe we have achieved an overlay

accuracy of less than 100 nm.

Summary

We have shown that using an AWG to control an SEM for EBL can provide a

versatile nanolithographic exposure tool capable of large scan field exposures. With

the flexibility of the 2201A, we are able to precisely control the exposure dose, I
accurately position the electron beam and maintain beam position as well as control

,he image processor to facilitate device registration. The 16-bit resolution in voltage I
and 4-aigit resolution in sampling rates allows for optimal control of exposure dose.

The variable output of the waveform generator also simplifies the adjustment of scan

field aspect ratios. We have shown that we are capable of exposing patterns in large 3
scan fields with nanolithographic features. Having the flexibility to pattern the fine

structures as well as other device features in one system reduces the overhead

associated with device design and fabrication.
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TABLE •. Commands used to configure 2201A for hornzontal rectangle exposure.
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Figures

FIGURE 1 Schematic dia gram of electron beam lithography system. 3
FIGURE 2. improvements made in noise reduction for an exposure completed in

a 1.4 mm scan field. ta) Pattern processed before noise reduction.

(b) Pattern after improvements we,'e made to the system.

FIGURE 3. Example of the 2201A waveform output when exposing a horizontal I
rectangle. Shown here is an Yample of three passes across the

rectangle. YSCAN triggers BB, and XSCAN. Notice the beam is off

during the retrace of XSCAN. With this, each sample in vSCAN

corresponds to one XSCAN across the rectangle. The time s,.,ale for

BBK and XSCAN is kept constant at 0.5 4.sec and the time scale of

YSCAN is equal to the total time for one cycle of XSCAN (xretrace +

xsamples). To ensure channel synchronization, YSCAN waveform
output begins on its SECOND waveform sample.

FIGURE 4. Registration mark layout with definitions. Marks are numbered in a

clockwise pattern. A scan of all marks is completed by scanning

marks 1, 2, 3, and 4 in order. Scanning of individual marks is

selected from a menu within the program. The size of the marks is

enlarged for clarity.

FIGURF 5. Processed back-scattered electron images of alignment marks for (a) I
four-mark and (b) single mark scans.

FIGURE 6. Miscellaneous patterns demonstrating flexibility and rosolution of the 3
lithography system. (a) Au dots on 40 X 50 nm grid and (b) Au

grating with lines on 55 nm centers exposed in the center of a 240 m I"
scan field. (c) Au rinq with inner diameter less than 60 nm with a

width of 18 nm. (d) Au line structure with line widths less than 100

nm demostrating arbitrary pattern Axposure capability.

FIGURE 7 Micrographs of line patterns exposed (a) in the center and (b) at the 3
top edge of a 1 mm scan field.

FIGURE 8. Magnified view of lines in Fig. 7(b). (a) Vertical grating and (b) spoke 3
I



pattern demonstrating features under 1.00 nm in a 1 .0 mm scan field.

I FIGURE 9. Exposure pattern used to investigate the line width variation across a

1.0 mm scan field. The pattern was exposed both honzontally and

vertically. Over 40 micrographs were taken of fabricated lines.

Micrographs (a) and (b) correspond to location of boxes in figure

drawn.

FIGURE 10. Exposure pattern used to determine registration accuracy. The dark

lines of patterns A and B were fabricated first. Having aligned the

sample. the mirror image of patterns A and B was then fabricated and

the registration accuracy determined.

FIGURE 11. Micrographs of alignment results for Pattern A (a) and Pattern 8 (b) of

Fig. 10 located in the center of the scan field.
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Swelling and surface forces-induced instabilities in nanoscopic polymeric
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For closely spaced, nanolithographically defined lines, a thin wall of resist remains to act as the
metal line spacer. When exposed to a developer, and then nnsing solution, closely spaced resist
walls may become unstable as a result of two effects: ( I ) internal stresses due to swelling, and
(2) lateral surface forces between adjacent walls. In this article we pe.rform a linear stability
analysis of a thin polymer wall under the simultaneous action of internal stresses and lateral
surface forces. We calculate a stability boundary, and show that internal stresses are necessary
for the formation of deformation patterns of finite wavelength. We find that, for slightly
subcritical swelling stresses a small lateral force can induce buckling, while, for slightly
subcritic.a surface tractions large internal stresses are necessary to induce instability.
The theoretical predictions are in good agreement with experimental data on
poly(methyl-methacrylate) walls produced by electron beam lithography.I

INTRODUCTION number, atomic weight, density, and thickness of the resist,
n arespectively, and E0 is the beam energy in keV. ForIn addition to ultrahigh resolution, at, important as PMMA, Z~=3.6, A =6.7 g/mol, and p= l.2 g/cm:.5 For 45

pect of nanofabncation for nanoelectronics is the achiev- keV electrons and a PMMA thickness of 130 nm, under-

able spacing of metal features. Extremely closely spaced ct rons a nd a eachidess of 130 .. , uhieh

features have been utilized in such devices as lateral tun- cutting is about 5 nm at each sidewall of our r which
aids in the lift-off process.

neling transistors,' split gates, and optical gratings.' In As in the lif bove. p ess.dpplcatins a areAs discussed above,.he unexpl~.i rL.,ISt spacer is in
applications such as these, metal features are required with the form of a thin wall between the developed lims When
spaces as small as a few hundred A.. The fabrcation of very lines are placed too closely together and high resolution is
naiTOW gaps over appreciable distances (a few /um) re-
quires very good control of lithographic processing param- achieved, the resist walls can either become wavy, fall over,eters.,tptentase or even lose adhesion to the surface, in which case they fa~l

Mc sn nanolithography for quantum completely. In this regard, internal stresses due to swellingdevices is effected by the lift-ofn' process in which a thin and lateral surface forces between adjacent structures canmetad layer is deposited by perpendicular, thermal evapo- play dominant roles. Although PMMA suffers little swell-

ration onto a resist (usually poly (methyl methacrylate) ing, which accounts partially for its ultrahigh resolution

k PMMA)] such that metal falls either on the surface of the properties, some absorption of developer is necessary to aid

undeveloped (positive) resist or onto the surface of the the development process.' Swelling and solubilization of

substrate where exposed and developed resist has beer, re- polymeric resists have been extensively investigated. '8 In

moved. Subsequent removal of unLxposed resist also re- marginally poor so' !nts, solvation forces favoring mixing
moves all metal cxcept that on the surface of the substrate. ace insufficient to prof tote dissolution of the polymer. Ap-
When metal patterns are to be placed very closely t -, • . prec.ible swelling can occur, however, leading to weaker
the space is formed by the shadowing of the . .. I mechanicai prcp.*tes, and to the buddup of internal
iietal by a thin "wall" z.f re. ' . We report here o, ,ie stresses ir, const. z:cd structures. Amorphous polymers of
funrlament•il limitations of solvent/PMMA interactions high milecular we,'ght may typically experience between
wl.-ch lead to fadure of the thin features necessary to per- 0.1% and 30% swelling, without solubilization, depending
form lift-off of very closely spaced features. c n solvent quality and temperature.s With mixtures of sol-

For thin resists at moderate energies, undercutting by vents, the swelling behavior can be of considerable com-
beam scattenng within the resist can approximately be de- plexity, since preferential partitioning of one or nmre com-
scribed by:' ponents of the mixture in the polymer can occur. TliL,

would be the case for most iesist developer solutions,
b=625(Z/Eo)t3r"(P/A) . I) which usually comprise moie than a single component.

Notwithstanding their valuable insight, thermodynamic
where b is the mcrease of the diameter of the beam at the models have enjoyed only limited success in the quantitta-
bottom sur~a,;, the resist, Z, , p, aiid irwe the atomic tive prediction of solubility properties of inulticomrnent

polymer-solvent systems, and such an attempt will not nc
,uthtor I . . ndence should bc au made here. Neveriheless, as c. discriminator of the quaIit

of" AJi Phys 72 (91. 1 Novemoer iau2 )21 8979/92/214088-"7$04 00 1992 Amertcan insiaiute of PhySlcz .1cft



of the model our predictions will be required to compare 0.3 T f I
favorably with typical swelling data. l e2 I

Recent experiments have considerably clarified the d/p=,• 2 1 1

mecbanism of intcracuon between polymeric surfaces.,!
Studies of thi nature have recently become poss;ble E nanks
to the perfecting of the surface force apparatus by Is- j
raelachvie i and Tab or. In this system, the separation be- • /.-i

onto which polymer is adsorbed can be measured with ; I
resolution better than 5 A. The separation measurements
rely on interferometry, while knowledge of the flexural ri-
gidity of the instrument enables calculation of the force I
between the surfaces. Normalization of the force by 2f" -0.2I
times the mean radius of curvature of the mica sheets di-
rectly yields the surface energy of interaction.' 0 Experi. -0."
ments show that in good solvents, polymer surfaces always 3 2 1 0 1 2

repel each other due to the tendency of the chain to mix
most favorably with solvent molecules. Conversely, in poor &o
solvents chain-chain interactions are more favorable, lead. I
ing to strong long-range attraction. Experimentally, the
attrdctive forces between polymer layers become significant FIG. I. Scbemauc representation of the potenual energy of interacwn of
within a distance of about twice the radius of gyration of a polymer surface confin,.d beween and eqsdistant from v i other sur-

facs. As the dimasonilem sepatabori d/p increases. the cur.-, broade
the chains, which can extend to several hundred A for high altheequilibrium pomuon around 6/p=O becoma differnt to sumali
molecular weight polymers.' 0 Common post-development lateral displiawsmnts At very small separatuons the potential becmnes

rinsing solutions are, by design, of poor thermodynamic purely repultive. At intermedale separations the ercr position may ether

quality. Therefore, n addition to iwe!ling, attractive forces be stable nr unstable depndin on the npdity of the wall. I
are expected to play a vital role in the failure of polymeric
nanostructures. All metal evaporations were gold from an electron

beam evaporator with thicknesses of 30 *1 nrm. Lift-off 1
EXPERIME~f was performed by saking the samples in acetone for about

Our electron beam lithography (EBL) system consists 5 mi, followed by the application of acetone using a hy-

of an Amray 1400 scanning electron microscope (SEM) podermic syringe, followed by a 15 s methanol rinse, and I
with a minimum spot size of 35 A controlled by a personal final blow drying in nitrogen.

computer interfaced through a Pragmatic Systems 2201A
16-bit arbitrary wave form generator. We used PMMA THiORY
with molecular weight 950 000 arnu baked at 170 "C for 4 'rhe interaction energy between two opposing surfaces,
h for all exposures. Resist and developer parameters were 1, can be obtained by linear superposition of long-range,
very tight!y controlled. Resist thickness was 105-180 nm attractive, and short-range, repulsive interactions. Gener- I
as measured with an Alpha-Step 200 surface profiler. The ally, the potentials are individually modeled as a power-law
developer used in all cases was a solution of MIBK:IPA of the reciprocal of the separation distance, r, giving
(1:3) with the addition of 1% (MEK) by volume." It has (within an arbitrary additive constant): '0 2  •
been shown that contrast results are extremely sensitive to
variations in developer tem.perature due to the high acti- I = 20 [ (p/r)'- (p/r)•b, (2)
vation energy, of the PMMA in the developer solvents." where 10 and p characterize the strength and width of the m
Using a temperature controller, our developer temperature potential well, respec- ely, and a and b (a> b) prescribe 3
was maintained at 25 * 0.5 'C. Develop time for all samples the rate of growth and decay of repulsive and attractive
was 15 s followed by a 15 s rinse in methanol. After de- interactions, respectively. For a polymer wall confined be-
velopment, all samples were dried in air at 90 "C for 5 mm. tween, and equidistant from two parallel surfaces with sep- U

All exposures were performed at a beam energy of 45 aration d, the following approximation is appropriate:
keV at a spot size of 5 nm and 120 jm scan field. Sub-

strates used in all cases were 200 nm SiC2 on thick silicon Y., = 1*[ 1p2/(d 2-62 )1 I':. ip-/(d2 _6 2) ]i2b} •
wafers Doses were very critical for making high-density (
patterns because of proximity eff:cta dnuing c-beam lithog- (for -d(6(d), (3)
rap'ay. They wet rnot rnily related to the line pitch, but also where 1, is th,. surfac: energy (energy/area), and 6 any
to the sje of the pattL.ns. For grating pitches ranging from virtual Isteral displacccment away from the planar config- I

".c 1510 nm, the doses varied from 1.5 to 2.5x10- 9  uration. Note that 6, and hence 1, will in general vary
C ,.n. For th," c.-se of only two parallel lines, doses ranged from point to point along the surface of the will. Figure I
from 2.5 to 3.5 x 10- C/cm for pitches from 80 to 120 schematically illustrates the shape of -, for different values
nm. of the duiensanlesa separaition, d/p. It is sae that for

4069 A$ AW. P'eyfs, Vol. 72. No. 9, 1 Novenriw 1992 HsilM IL d400



large values of dip the erect position is indifferent, while it -
becomes progressively more unstable as the surface-to-
surface separation decreases. (Note that we are ignonng
for the moment the elasticity of the wall, which, by coun- 6(x.
teracting deformation, would stabilize the system.) Inter-h
estingly, as the separation further decreases repulsion be-
comes dominant and the equilibrium reverts to 4y
unconditionally stable. Experimentally,'" the transition
should occur around dzR/2, where R is the radius of j
gyration of the polymer chains. Apparently, this situation
could be exploited to greatly improve resolution in nano-
lithography. However, it may be difficult in practice to take
advantage of the phenomenon, since typically, R/2 is on
the order of 5-10 nm. Additionally, interpenetration of the
chains will. in fact, impede complete separation of the
walis after solvent evaporation.Differentiation of the interfacial energy (Eq. (3)] with FIG. 2. Diagram of tail. thin wall demonstrating geometricaJl pammeters
Srespect to 6 provides the interfacial stress acting on the used in the analysis. The wafl has been hypotheic.dAly sectioned at the

respet tonodal puonts of the d~uswnton.

lateral surface of the wall, a:

dlX,
d'6 4) AM,= 160 (.tN/m) (after proper normalization by 21r).

Roughly, we mnay assume R = 10-30 (nm) in Eq. (7), thus
In the limit of small displacements, the detailed structure placing e in the range: 10"O <Ek10" (N/m 3). We show
of the potential is irrelevant, and c can be linearized later that these values are sufficient to cause instabilities in
around the origin (6=0) to give arrays of closely spaced. thin polymer wa.ls. In the follow.

0, = 0, (5) ing, we shall focus on the case O > 0 (signifying an unsta-
ble equilibrium), and make use of Eq. (5) to describe the

where lateral surface traction on the wall.
We consider now the stability of an infinitely long wall

E=-(6) of width w and height h under the simultaneous action of
_-- _- "-) lateral forces and internal stresses due to swelling. The

system of interest is shown in Fig. 2, which also gives theHenceforth' El will be referred to as the "surface stress characteristic geometrical parameters. Mathematically,
coefficient." Equation (6) can be used to calculate E from this problem is conveniently formulated within the frame-

any work of linear plate theory, leading to the following homo-vsuraem Norte thatsur tem agnitude:o an d sige n p oyerwollen
system. Note that both the magnitude and sign of 8 will geneous boundary value problem for the lateral displace-
generally depend on the dimensionless separation dip. ment, 6:13
Therefore, in the following we shall attempt to estimate
only the order of magnitude of G. 3 d6 346 3

Dimensional analysis of Eq. (6) and expenments") x 3-2  Y-'- +a- =-.\x--LIh (8)
suggest the following scaling: 5=0 at y=O (no displacement at the bottom),

eu A2/(R)2 . (7) (9)

where AM, is the depth of the attractive potential well. and 36a
R the end-to-end distance of the polymer chains. As men- y at Y= (built-in bottom end), (10)

tioned previously, surface-force-apparatus experiments di- 026 0 6
rectly yield 1, as the measured force normalized by 2-r ff 7+vj-=0 at v=l (torque-free top), (11)
times the mean radius of curvature of the mica sheets.' 0

Unfortunately, experimental data of this nature are not 131 o•h
available Cot PMMA. Polystyrene "brushes" in various sol- 2iy-.- (2-v) 0 at y: I
vents have been extensively investigated, however. Because ° = atv=0

of the osmotic nature of the interactions, the detailed (shear force-free top) (12)
chemizal structure of the polymer is believed to be only ofsecodar ,mortace.t° hereore daa onpolstyene where the dimnensionless variables and parameters are de-

secondairy importance.' 0 Therefore, data on polystyrene fined as,n should prove useful for obtaining estimates of the general
magnitude of AMr Figure I of Ref. 10 gives plots of nor- x=X/h: y= Y/h. (13)

malized force versus sparation for polystyrene brushes in
an aliphatic solvent below the 0 temperature. The data 12( I- (14)
show a pronounced attractive well with a depth of about Eu((4

.4090 J Appi. Phys.. Vol. 72. No 9. 1 Novefmbe, 1992 Hill of 81. 4090 -



el2( -IV)h' ,TI,=26Ew:/[30(1 - vh]h, (22)fl- E• 15)
Eu = n2.-r/ 1.917 (23)

In Eqs. (14) and (15), a,);0 is the internal compressive For swelling induced stresses. o'•. can in turn be obtained
stress. 6 is defined in Eq. (5), v is Poisson's modulus, E from U
Young's modulus, and h and w the wall height and width, (4
respectively. e, Ec, (24)

For an infinitely long wall, the solution to Eq. (8) is ot where f, is the hypothetical swelling strain that the wall U
the form:' 3  would undergo if allowed to expand freely. Equations (22)

6(x,y) =cos(ýx){A {sinh(ay)- sin(By) and (24) enable calculation of the critical wall aspect ratio
for stability, (h/w)*, as a function of the swelling strain:

"4-"-B[osh(ay) -cos ( }, (16) [h-* I
where A and B are integration constants, and ( V26/3 (25)

i- x+ vA•+fl Equation (25) is convenient for comparison with expert- I
B- v-g+ v Ag2 + fl. (17) ments, since it does not contain the unknown modulus E

(which presumably changes upon swelling). As expected.
Variable 4 is related to the wavelength of the prevailing a short wall can sustain a higher degree of swelling before
distortion in the x direction, A, as buckling. Additionally, for a constant Er,, Eq. (25) pre-

dicts a direct proportionality between critical wall height
A = 2Th /9. (8) and width. As shown later on, our experimental findings

Imposition of the boundary conditions generates the fol- confirm this prediction.
lowing equation for the cigenvalues: Case (2): A=O

Treatment of this case is similar to the previous one
except that, here the smallest critical lateral "'force," Wl.,

sa, corresponds to 0*=0. This implies an infinite wavelength,

). [Eq. (18)], which means that the wall does not buckle,
xsinh(a)sin(O), (19) but simply bends over sideways. Solving Eq. (19) numer-

where ically, we find: f1*.= 12.363, and * = 0. Making use of Eq.
( 15). the critical surface-stress coefficient, eW, is obtainedt = -: - vPza

as
s~-a - v• 2. (20) I'03EwI00ý (26)

Note that in order for 6 in Eq. (17) to be real, we must (l - )h (

have If estimates of E and v were available, Eq. (26) could be

O<f< I used to determine e* experimentally.

where The search for the eigenvalues in the combined case
(i.e.. .`\=O and fln=0) is now restricted to the domain

E-2•2 /( A-,- , A-7-i). (21) (0(<A<A*, 0<fl<f1, (O<cl). Delineation ofthe stability
- ue oboundary implies the search of the minimum values A and

The use of e, instead oft, provides a more efficient strategy •1 that simultaneously satisfy Eq. (19). A convenient nu-
for a systematic search of the e.genvalues. mencal strategy is to discretize the interval O,<A*, and

Equation (19) implicitly defines a relation among A. then find the corresponding minimum values of fl (or vice
ii. and E. In the search for the roots, the following limiting versa). The results of these calculations are given in Table
cases are important: (I) A =0 and (2) 11=0. These cases I. while Fig. 3 shows the stability boundary. The wave-
will be treated separately, since they provide clues for the length of the distortion, A, as a function of £i is shown in
solution of the general problem in which lateral forces and Fig. 4. Note that A. is relatively insensitive to latera forces
internal stresses act simultaneously, up to about 80% of fl. It is interesting to note in Fig. 3 U

Case (1): fl=O that, for Ad, a slightly subcritical lateral stres, say f1
As is customary in stability theory, Eq. (19) (with =0.95 fl", does not cause instability. On the other hand,

1. =0) is satisfied only by a discrete set of c (or 0) values, for a slightly subcritical value of A, a small lateral force
provided A is greater than or equal to a minimum critical can be catastrophic. I
value, A*. Physically, A* is the smallest (dimensionless)
stress necessary to reach the marginal stability limit (in- RESULTS AND DISCUSSION
different equdlibnum), and can be calculated by solving Eq.
(19) numerically. We find: A*= 10.40, and ý*-- 1.917. Plotted in Fig. 5 are the experimental critical heights
Combining these results with Ees. (14) and (18), the for buckling versus width, for PMMA walls fabricated by
smallest critical stress. o4, and the associated wavelength, electron beam lithography. A line through the origin sat.
A, are calculated to be isfactonly fits the data, indicating a direct proportionality
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TAL n1 ismut vaue ofA and 17)frSAWv i .

,uoctata norumalizd wavcklgth, A/h (the caiuuons i % a.sume
=0.50). gi

A 8B

10.40 O.000 3.77 7
]0.19 1.000 396
q.990 2.000 -82 6-
Q 737 3.000 :o23
1474 4.000 b53 5.
K932 6.000 4002
8.272 8.000 4 309 4
'450 10.00 5.097

6 7O 11.30 6 396 /
0.000 12.08 ý '213
! 00X0 12.362 "59.2 2

0.01 2 3 4 6 7 9 0 11 12 26

between critical wall height and width. This finding is in FIG. 4. Plot of the dimcnsionless wasekngth of the distorins of the wall.

agreement with Eq. (25), assuming a constant degree of A/h. as a function of the dimensionle cntical ister1] sumsa, a.

swelling. The critical aspect ratio for buckling can be cal-

.ulated from the slope of the line, and we find that (h/ The maximum amplitude of the lateral displacement of

:v)*=4.75. Calculation Of r,, from Eq. (25) requires the wail A (see Fig. 2) can also be measured from the
knowledge of Poisson's modulus, v. Because the polymer is figure. The hypothesis that the deformation profile remains

,wollen, and the internal stresses are small, the assumption unaffected by solvent evaporation allows us to obtain an

v=O.50 is approprate, giving e,,=5.!%. This vaiur. is independent estimate of c, from the observed value of A.

well within the expected range for glassy polymers. The curvilinear contour length between nodal points at the
Another easily accessible observable s the wavelength top of the wail after buckrling can be cnlculatd from

of the distortion after buckling, Ai. Eq. (23)]. Figure bo

shows an electron micrograph of tne shadow of a wail A 2'2 + /2-1TsA

formed from a 140-nm-thick PMMA layer. The light areas L=•.(I+E,,) =- . A ) s
are gold films created by lift-off. The measured wavelength (27)

of the distortion is 460 rum, in excellent agreement with the For (2-ml/A) 2 .0 (subject to verification), the integration
value of 459 nm given by Eq. (23) with h=140 nm. kernel in Eq. (27) can be expanded up to second order

terms and integrated to give

'4

-2I 
UNSTABLE 50 r

"0- 40'

I 4STABLE

B (STRAIGHT WALLS,

.E 30'
6 STABLE

2 20

LUNSTABLE i-

0 (WAVY WALLS)
0 1 2 3 4 5 6 7 8 9 10 11

0 20 40 60 80 100 120 140 160 ISO 200
FIG. 3. Stability envelope for the css in which interral stresses (A) and

aati"r attracuve forces ([1) act stumulutcusly (Eqa. (14) and (15)1. For Cri,cal Height (nm1
N5 the curve is prmtuicalv honzontd. implying that for slightly sub-
,nucal values ul" iL lrge internal stresses axe needed to cause instability.
On the other hani. for slightly iubcnuL•"l values of A a smal Lateral force FIG. 5. Minimum width of P1MA wals& achievable for a given staning
:s sufficient to induce buckling, resist thickness (wall height).
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is especially crucial when dealing with marginally poor :ulated the stabilit, envelope anal wavelength of the d5stor-
solvents, as is the case for most post-development, rinsing tion for the general case in which internal swelling stresses
solutions. and lateral surface forces act simultaneously. We also

As a final note on the modeling of wall stability, the showed experimental evidence that supports our predic-
following points must be considered. First, in the theoret- tions, thus demonstrating the existence and seventy of
ical treatment we have ignored the effect of hydrodynamic such instabilities in nanolithography. In the limiting case
forces which, at least in principle, could also be invoked as of small surface torces, predictions and data agreed quan-
a source of instability (e.g., agitation during development). titauvety. Order-of-magnitude calculations of the strength
In fact, such effects are unimportant within the context of of the lateral interactions between polymer walls (based on
the stability problem. since upon cessation of flow a hypo- experimental surface force data) confirmed that lateral at-
thetically deformed structure would always '*spring back" tractive forces can substantially enhance the action of
to its most stable configuration (as dictated by the equilib- swelling stresses, leading eventually to failure. Practical
rium criteria derived previously). Additionally, hydrody- implications of these instabilities in the fabrication of ar-
namic effects cannot explain the correlation between defor- rays of closely spaced polymer walls were discussed. For-
mation of adjacent structures observed in Fig. 9. Second, mulation of developers that maximize contrast, but mini-
our simplified analysis assumes that the walls are: (I) mize swelling and attractive interfacial forces, is thus
strongly anchored at the bottom and (2) of constant relevant to attempts to achieve higher resolution in nano-
width. The validity of the first assumption is easily inferred structure fabrication.

from the experiments, since floppy, weakly anchored walls
would be incapable of retaining a deformed configuration ACKNOWLEDGMENTS
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ABSTRACT

The physical strength of poly (methyl methacrylate) (PMMA) resist is an important factor for making very dense
patterns with most types of lithography. For lines placed closely together using the lift-off technique, a thin wall of PMMA
remains to act as the metal line spacer. When placed in contact with a suitable developer, thin polymer waills may swell and
buckle, depending on the desired aspect ratio of the thin walls. We use electron beam lithography and a high-contrast
developer solution to study the relationship of the maximum height-to-width ratio of the P MMA walls n-m- a to avoid
buckling, and the resulting effects on metal thickness after lift-off. Maximum achievable aspect-ratios for our developer
system were found to be constant 'nearly 5:1) for widths from 20 to 45 nm and lengths of tens of microns. Theoretical
predictions based on the hypothesis of a swelling-induced elastic instability are in excellent agreement with the experi-
ments.

In the past few years, quantum devices based on ultra- demonst-ated with distances between gates of about 100
small geometries have received considerable attention. The run.i More recently, optical gratings have been fabricated
usual case involves some feature, e.g., gate length or metal with a metal line pitch of 50 rma over several microns.' All
line width, which is reduced in size in order to observe size such devices require excellent control of line spacing.
quantization. In some cases, reduction of line widths plays Because of its uniquely hugh resolution, poly (methyl
only half the role, whereas a decrease in spacing between methacrylate) (PMMA) is among the most important resists
features plays an equally significant part. For example, for nanostructure fabrication. Utilizing the lift-off process,
split gates with 100 nm gaps in the form of bends have been the resolution of resulting metal patterns depends not only
made for the study of tranamuision properties at corners.' on "he width of the defined lines, which relates to the reso-
Also, lateral resonant tunneling transistors have been lution of the beam formation system, but also to the quality

of the edge profile of the resist, which depends to a great
Electrochemical Society Active Member. extent on the contr ast of the resist/developer system. The
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most common developers for nano!ithoprapnv .,re mctnv% i.
,sobutvi ketone:isopropyl aicohoi ,MIBK IPA" I :i' :n
ceilosolve:methanol (3.71.' 1oth demonstrating v-rv hien : I

resolution. One weakness ot these deveiopers is the inaoti- I
xv to dissolve high molecuiar weight components left be- I - A

nind from doses just at the threshold of compiete deveioo- I :! ,Resist
ment. This can lead to scum layers which can interfere with . . .. / </ ,Substrate
,.ie itft-,ff nrocess.' Higher doses necessary to decrease the , . • '4 .... / " . -///,
molecuiar weignt of the scum laver leao to a loss of resotu-
";on due to such factors as beam tails ano enerý. scatterinn I
1t has oeen shown' that adding a minute percentage of ._- -

methyl Pthvl ketone tMEK) to the common developers can
increase contrast and improve lift-off resuits. and there- " " ;
ore allow denser patterns to be fabricated.I

In this paper we discuss the fabrication of extremeiy
dense patterns on a solid suostrate at energies below 50 ke''
without the use of such techniques as shadowing of a single
pass exposure or re-alignment of separate patterns.' AJ-
though patterns as small as 15 nm have been achieved with I
double tilt shadow evaporation, a major difficulty is that
of connecting the resulting lines to other structures within
a device. Double alignment techniques ' have shown /

equally impressive results with 16 rim lines on 24 I nm pitch. I
nlut this method is inherently difficult and complicated. re-
.ies on the use of a scanning transmission ejectron micro- * l * l m 1 -
ýcoDe iSTEM) for aiigning the patterns. and requires multi-
ple exposure steps. So far. only membranes, as opposed to
soiid substrates, nave been utilized in this technique since
ijignments are facilitated using transmission imaging. Al-
..nougn adding significant complexity to the process, mem- b

tranes offer an inherent advantage ot reduced proximity Fig. 1. Explonation of the lift-off process. iol of reuwisi by
:tfects. and thus a higher exposure modulation between "he electron boom Wor development, resultin in night ug.
.:nes and spaces. Unfortunately. however, membranes are ib) Resist wall profile aftr developmen. Ic Resist walls atta

not amenable to device fabrication or suitable device per- liohion from small, lpenn diculor soume. (d) Metal nsml sfteen

forrmance. The developer used here helps to improve con- disslutio of mining resist in suitable solvent.
trast so that very dense patterns can be fabricated on solid

i ubstrates even without very high beam energieb uffered by
zhe use of TEMs. swelling can occur, however, leading to weaker mecharucal

Both the beam diameter of the exposure tool and the properties. and to the build up of internal stresses in con-
contrast of the resist/developer system have a significant strained systems. Typically, glassy polymers can expert-
effect on the achievable density of nat-row metal lines. In ence between 1 and 30% swelling, without dissolution, de-
the limit of veryi high resolution and contrast, the mechan- pending on solvent quality and temperature." Such a low
*cal strength of the PMNIA used for lift-off is the final lim- degree of expansion may be irrelevant in most cases, but. as
;tation to making extremely closely spaced patterns. The shown below, can lead to severe dimensional stability
ift-oif process is described in Fig. I Exposing energy, in problems in the fabrication of thin polymer walis.

our case electrons, causes bond-breaking in the PMMA Experimni •
!Fig !at After development (Fig. lb). metal is evaporated
oerpendicularlv to the surface, so that metal coats only the Our EBL system consists of an Amray 1400 scanning
,op oithe resist and the exposed substrate surface (Fig. 1c). electron microscope (SEM) with a minimum spot size of
For thin resists at moderate energies. unoercutting can ap- 35 A controlled by an IBM PS:2 personai computer inter

nroximatelv be described by' faced through a Pragmatic Svstems 2201A 16-bit arbitrary
waveform generator. The deta;is of the system are de-

b = 625 (Z/E)t t 2'p/A)'- [1 scribed elsewhere.'
We used PMMA with molecular weight 950.000 amu

where b is the increase of the diameter of the beam at the baked at 170'C for 4 h for all exposures. Resist and devel-
bottom surface of the resist, Z. A, p. and t are the atomic oper parameters were very tightly controlled. Resist thick-
number. atomic wetght. density. and thickness of the resist. ness was 105 to 180 nrm as measured with an Alpha-Step
respectively, and E, is the beam energy in keV. For PMMA. 200 surface profiler. The developer used in all cases was a
Z = 3.6. A = 6.7 g/mol, and p = 1.2 g/cm-.'" For 45 keV solution of MIBK:LPA (1:3) with the addition of 1% MEK
electrons and a PMMA thickness of 130 rim. undercutting is by volume.' It has been shown that contrast results are
about 5 nm at each sidewall of our pattern. which aids in extremely sensitive to variations in developer temperature
the lift-off process. During the lift-off step, dissolution of due to the high activation energy of the PMMA in thedevel-
the resist in a suitable solvent causes removal of all metal oper solvents.' Using a temperature controller, our devel-
except that on the substrate surface (Fig ld). oper temperature was maintained at 25 ± 0.5°C. Develop

As seen above, the unexposed resist spacer is in the form time for all samples was 15 s followed by a 15 s rinse in
of a thin wall between the developed lines. When lines are methanol. After development. all samples were dried in air
placed too closely together and high resolution is achieved, at 90°C for 5 min.
the resist walls can either become wavy. fall over. or even All exposures were performed at a beam energy of 45 keV
.ose adhesion to the surface, in which case they fail corn- at a spot size of 5 nm and 120 lin scan field. Substrates usedI
pletely In this regard, internal stresses due to swelling can in all cases were 200 rim SiO. on thick silicon wafers. Doses

play a dominant role. Although PMMA suffers little were very critical for making high-density patterns be-
swelling, which accounts partially for its ultrahigh resolu- cause of proximity effects during E-beam lithography.
tion properties, some absorption of developer is necessary They were not only related to the line pitch. but also to 1
to aid the development process." Swelling of polymeric the size of the patterns. For grating pitches ranging from 70
resists has been extensively investigated.: In poor solvents. to 150 rnm, the doses vaned from 1.5 to 2.5 nC/cm. For the
solvauon forces favoring mixing are insufficient to pro- case of only two parallel Lines, doses ranged from 2.5 to
mote dissolution of the polymer. Partial plastieization and 3.5 nC/cm for pitches from 80 to 120 ran. I
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Fig. 2. Itenalinin moteol after lift-off of a typical foiled wall. Light Fig- 3. Minimum width of PMMA walls ichieva6I. for a girei
areas are gold, Mn dark, wa;y line is the shadow of faldPM starting resist thickness iwall height),

wall.opacitv 
to radiation (e 9.. x-ravs). etc We have determined

Al1i metal evaporations were gold from an elect.ron b)eamn that to acnitcce reiiabie it-t.the thickness of PMIMA
evanratr wth rucblesiz of 5 m ad adisanc )5411 hou'd bie at .east three times the oesireui thickness of the

cm from the source to wafer Mletal thtckneSses %%ere c ioseiv
cairae wih a film thickness monitor i.no .1 ýjrtiact ýmai me tal mattcrn This ruie o' thumro will depend to some
:aliratioede l ea hcnse %r, I): ,.Li) \ýtvrt on the -rt-ti tvaiorat.on -v stem since tne phvsicai

ucotilometer. ~ ~ ~ ~ ~ ~ :Z Al!: meto thcnse e' i) m i oi* ;nt . 'nic c -lirct-o-sar I e spacinv.
-xa pelornei )%'soain tn iMP~S :1 ~t"rl "', 001 ;no ne care .;.-'v to iric tric e:ernendicuiar to and

-,min. i.oilowec by the application -! acetone -;sir.tz a hvt) ýrectv a .bov 'o ýeS okri'v '\' '.n ar n Of .Meta
syringe .O d bv a5s metranot rise. ;i.5i i'atrd. t m .i'~ :cs ' ePM the i t.

nowocxmgin itiogn. t'eveo [ s:nL! trý:' !oiationsrnin. min -aýuidedi by tne

Resuts ritcalaspct-atio 'cr~terioni. 'k v !abrmcated double goldReulsinw %ith anapoimt% I nm space and a metal thick-I ~ ~~~~in order to achieve lift-olf of evaocrated meT-.al hýirsitý I"s .1 m vm10 i nc eit aes h ie
necessary tht.v al eanbewe re(ecoe ere continuous andi straig~nt over a distance of 25 Lim.
:ireas Assuming min~or unciercutt~rg for thin resists aoneJb Ilbithg
nigh beam en~ergies. it .s expected tnat the spaces of thle ~. i ~ 'ii thg

rsuiting metal patterns closelv reflict the wvidlth of the re- magnirication.Iann P.NINA wails. especially at tre top Because ot the Discussion
ven , ow soiubiiitv oif u nexposed PMIMA :); c-rv high W'e begin our discussion .kith <'ote sýmple theoretical
molecular weight." the height of the wvalls after cevetiop- considerations about 'he st!abil~t': 't a long wall with a
rent IS still appcoxurnateiy the same os trte :n:tia' re'sis r,.gidlv anchored bottom Lino a top free end sub~ect to inter-

thickess.nal ,tresses Ccimparison wrth Mporiments will then
After appl~catiun and baKe. PMMNA can I:(, c')nidtmde'e a loe follow% he theor-ettwal prctimctions.

strong. -ltassv material Exoosure t roc-e:tov'r ho% T he system- -i interest s s.hown n Fig 5. whichl also 121'.-s
er. c'auses swkelling of the polvmer, leadiinv to the tdijiluO h cnaractcr;stic ý,vometrical .).,rnmeters. Mathemati-

i)t -internal stresses in Strongly anich.rored str.icturus.C-m ýailv. the proirlem :sco-eneti rruiated within the
..rress:;,e Stresses In .he wall can, ;n turn. ~caa to 1lUiuct 'ig. 'ramework ot ineor piate treom-.''ait to the following

I-ho .all asnect-ratin i height-to-kvidth :s an niportant homogeneous noundianv voi,ue ri:oblern !or the lateral dis-
parameter in delineating the stability thiresnold irnce` I olacemont. oiI tal. tin '.-ail will be strongly susceptible to smna! di-nen-
siona, perturbations around the erect position. vonile a 6 iS 1 ,0i2(11

ýhort 'vall wvii e able to sustain a higher degree or swelinli. Vx ',-I!) 'Ox
before buckling. Figure 2 shows the remaining metal after
lft-toff of a tvoical failed %-aill The bright areas are evaEno-

-tagold- an-d the diark. wvavy center lie is too <nadow of
'he re'maining wall over which gaid was diepositeo and re-
moved. The wall was about :30 nrn. 'xide ano ',40 rim nigh.

We show later that a cirect relationship exists betwecn theInia wail height and the wavelength of the distortion.
Figure 3 shows the minimum width of a PMIMA wall

achievable for a given starting resist thickrness. Error rtars
-epresent vaniations in metal fline sepraration -anci tnereiore
wvall thickness) over the length of the oines These uata were
m)Dtained by smooithly vax-vinR the line pitcri lor i given
:resist thickness and ohsei-ving the point at which lines ei-
ther failed completely' or b~ecame nomticeabv wavy Trhe
cata indicate a direct proportionality between cr::!caj \% all
neight and wvicth, rmpiving a constant asoect-ratio for -

a uc kI r. g
AVlthoug~h Inc low.er the thickness of tne P.M.NA. the

closer the achievable line spacing, the resist thickness can-
not he loweted arbitrariy because. ior oiiferent processes.
dlifferent thicKness ol metal are requirecd Oereno inv Uii stet)
,overage. iine continuit%. multiple onetai .Avers. LWyice Fig. 4. Very closely spaed gold lines af high ... ow--wcat.Te

scaling requirements. electrical resistance constraints. duistancen between lines is 20 rim oam a distanc, of 25 jiw.
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S4inai stabilitv limit (indifferent equilibnuml. and can be
-:aicuiated by soiving Eq. 10 numerically. We obtain N'
'- e 40. and .' = 1 917. Combining these results with Eq. 8
and 9. the smallest critical stress. o'., and the associated
waveiengtn. k, are calculated to be

6(X. y) P', = 26 Ew:/[30(0 - v')hl 1121

h ~.rh 2V/1 .9 17 1 131
F.)r sweiling-induced stresses, o;_ can in turn be obtained
wrom

E= 1. [141

SNwhere F_ is the hypothetical swelling strain that the wall
',uld undergo if allowed to expand freely. Equations 12

aid 14 ailow us to calculate the critical wall aspect-ratio
z for stability, (hiw ). as a function of the swelling strain

h' W
= \r3(1 - (151

For inw i > ih,'w j" the wall will buckle. Equation 15 is more
convenient for comparison with experiments than Eq. 12.
since it does not contain the unknown modulus E (which

Fig. 5. Diagram of toll, thin wall demonstrating geomerical presumabiy changes upon swelling). As expected, a short
parameten used in i6 analy.: '.vail can sust-in a higher degree of sxkelling before buck-

hng. Additionally, Eq. 15 predicts that. far a constant F_.
!he crittcai wall height and width should be airectlv pro-

ornt.onai .) each other This prediction :s in excellent
0= at - no displacement at the oottom)

:, 'greement with our data, as shown in Fig 3
"The siooe of the line in the :igure provndes the critical

6 .spect ratio for t)uckling: (h/w) = 4 75 Calculation of c,0 at U ) ouilt-in bottom end) i41 from Eq 15 requires knowledge of Poisson s modulus. v
Because the polymer is swollen, and the stresses are reia-
tivelh small, the assumption v = 0.50 is appropriate, giving: I

-. v -=0at y n ,:ornue-free topl 131 e_ = 5 1% This value is well within the expected range for!y,_ ox" gglassy pol%,,crs.:'

Another easily accessible observable is the wavelength of
( 2 -v I.-J at u the distortion after buckling, k. (Eq. 13). In Fig. 2. the meas-

.. , ,r -ser c ured wavelength of the distortion is 460 nm. which is in
shear force-free top) 161 -xceilent agreement with the value of 459 rim given by

'.nereo..010stheinternaic, "oressivestress. vPoisson's Eq 13 with h = 140 nm.
"modu, E The maximum amplitude of the lateral displacement of Imodulusn E Young s modulus a w and i . the wall thick- the wail. A tsee Fig. 5), can also be measured by SEM. If we7ýess and height, respectiveiy an infinitely long,-wail the

>olution to Ei. 2 :s of the form assume that the deformation profile is unaffected by sol-
- ent evaporation. then the observed vaiue of .1 can be used

6x. y) = ýos t•ý.'xh ilIA sinhioat,,h' - sintLy/h)) "o obtain an independent estimate of e_ ,.s follows.
The curvilinear contour length between nooal points at

- i icosnacxy/h) - cosqlylh (I :1 'he top of the wail after buckling can be calculated from

".xnere A and B are integration constants. and ' -~~~L .. .. I.1- . •) +( I I smin`z) dz :161

'--- xFor '2r.,Xi/<< I (subject to verification, the kernel in
Eq. 16 can be expanded up to second-order terms and inte-

o.. "21 -- )h grated to give

.CA\ -ý. 1 3 • • :

Variable i is related to the wavelength of the prevailing = I 1 - J 17]

distortion, X. as folows This equation can be used to calculate Er, with the mea-
KI 2rh/ý [91 sured values of A and A. From Fig. 2 we estimated N 1

33 nm. giving (with k = 460 nm) E. = 4.7%. This value is inImposition of the boundary conditions provides the fogow- -ood agreement with the previous estimate of 5.1%. Tf.ese
mg equation for the eigenvalues findings confirm that swelling is the dominant mechanism

o cs l "or instabilitv in our experiments. It is remarkable that a I
2ts + is* t:} cosn() cos3, = (a-t - 132sz) sinh(a) sin(13) 5 swelling can lead to the failure of a wail less than nve

[10] times higher than its width.

where Summary and Conclusions
=3: We have investigated the relationship between min.mum

til 1 ::he spacing and maximum metat thickness for EBL-fabn-

s = ý - cated patterns using high-contrast resists. Both theory and
cxperiments confirm that a small degree of swelling may

As cistomarv in stability theory, Eq 10 is satisfied only lead to ,he catastrophic failureof PMMA wallsof relativehv
iv a discrete set -A I vaiue5. a' vided .\ is vreater than or modest aspect-ratio For subcritical aspect-ratios, line
,qual to a minimum critical alue. A" Physicallv. V is the i)}: 'is as smail as 20 nm. and metal thicknesses as high
smallest idimensionless) load necessarv to reach the mar- im were reliablv achieved without loss of adhesion or
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ON TICE AT`TrUMN'NNT OF OPTIMUM DEVELOPER PARAM-NETERS FOR P-MMA RESIST

' ,3 arv H Bernstein And Das ide A hill
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Universitv of Notre Dame
Notre Dame. :N 46556
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I Because or Ine inicque[h hieh resolution ,tterea I-, .oiv.o(nentivl
meihacrvlate)it PMNIAi tr pracucaliv ,all torms t', :;iocraph; is ecnnoloizical
;lnitlicance -'rTnla s stromn 'A C I. C .;,, u ',;cni ! ar -:i" ,ener cntrist
developers or PMNIMA ý,icrn .'.nae Snown in romcd resolution. S SUscclitlit:i II, p roxi .nit, e "tfects aio i)lcer ';!! ,!t p'r tx.ri•c. %k. n no .)5s- .; son s 0

exposure. ,,'e rcpor' data nich demonstralte 2;. •i:trovermen in :ontrast ,v

more than 35 ,i(h the addition (t as ittle as I ' imorn'.. I e '. ketone :i..k

:o otner common 1teslotrs "'e dlmscuss a Ani,h she ohServi
,cI;i'rast 'e.~".."a •c c". `a.". o.-e.,'sq `' ,r ',!.,',:o : ' al:'' 3: ,,•¢]G ;1C ';C' -

.rlik concentration. l1 •peratlirc or dc ciotI titie ic," contrast. ',,, inciudcI\ocriml etiiai c% Iic t"c iII "tipl iirtl ot I, ii ra t lrc :!0 lium ck :t: , iJ Olpro v{ lt'cii\

I Introduction _.cih [,r, .mn:es is .•: oit rciiabihiv. ;Oroslritiiv clit.
::inilunit% an . I,) ýc'iC ,"xicni rcoluIioni. are .il

Of all materiats utilized in the fabrication ot .:iproacc

nanostructures, poly imethvl methacrvlatet PMNIA, e h", ).,c :ý.0,:. (hat -!%cr.il :,araitlc rs _:i

s among the most important. PNMMA remains 10 threas e .k•,iorao: -: PNlI,.A :r-t. fe tound th.-i

;-cpular as a positive resist that virtually all laterailv .o,.inll A . cr, n.i, r't r.,ct'aLtc 01 mcm'i cni kchon.
,LfineA quantum devices rely on PMM A tor patterns iik) .' •-,':•1.-i 1]1. eloIS[3r' i tel ra•- trasi,.
below ;00 nin regaraiess of the iithographic techn:quc :im ro',cmcn! .:;: .i.,. d;mensiiotii ,l•,,i:cntc, li!

cnipioved. In fact, PMM A is the only proven positi'.e i, Io-oft aJii", <,:.-.n . %,e iiake tind t1at.._5.1 .i-tsilu.ablc :nto the 10 nm regime . C,..atarrilratlon na'rru', I. !emplt ralurc-, ranee, an incro3se In tm .'~lr"-I

res'st is utilized for etch masks in ihis dimensional .,s o s _..,'r., :ast Finallv, !s discussed .:i

r-e, ime. but is slo~er and more oifficult to vork twrther ýrc:o's. .e propose that an increase I,
,ith.) _'-',elc t;ime . i;so redicied to improve c-ontraSi

The typical manner in which PNIMA is
emploed is that of exposure to electrons, X-rays or
Iceep UV light followed by development, me:'llization E\ýpnmcnial
and lift-off. The resolution of the resulting metal
pattern depends on both the width of the defined line C oiitras: iesuits ,or a variety of develo ',Nr

and the quality ot mie edge profile in the resist in lormuiations •,ere determined using a standard
turn. edge profile depends on the contrast, "Y. )f the techniqu"e >.sine electrcn beam iihoeraphy (EBL-I esistideveloper systent Contiasi is ,Jeined as W'e at 40 kV. ,,e rx posed 25 50 um x r0 u) squares it

maximum slope of. the cure of rnormalized resist )50.000 amu PIMA. 0 4 to I _im thick with a senes
thickness remaining after development as a :unction i 0It doses. c:Leloped for v,-,ous iti ts ano

Inc log of the exposure dose. \s con:rast increases. temperatures.nd determined !he n'ormalized rcist

07496036;92. 020237 - 04 s02 00.0 -992 Acaeemic P'ess Limltd
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iLf'lC5n5C~S *".' rtarcCe :.'ClilOllilr', ,.sin• a .h>ini *':iz ;rIni!r. -•rcjhrmit . I I:.•c .- e~',, c,,kr

:"ektak I i -ot'lloineter. .ie qiawiiv At the data ',as w\orc, ..c.r.: .riwn Irm , mii ons . ::n cii,:,

:,.ceiIent. and an example of the ray, data is iv•er ii , :iipIovc!, .i• jc,.eloxLrs lr i;1\1 A phas .:M A
v Vinations in resist thickness were snown to :inct, ei chi ctoic - mek).Cih,, a.:ohoi ,L. !0P)

i'', no 1:9Ct M'n he rcsuits Ex.enmenta! f~tr 4 -- ixtire rcrred K) to here , VEK-

.:iieters aia :ontrasts are sum arianzed in Table i :cth ',I 1ou i ketone imnik} isopronvi al, 1,i•!, I P-A i
; :i xuc retcrred to here is ',IIBK and

ethoxxv ethanol (CcllIsore or -s ".i.meihanoi. \ l li
tinixture referred to here as CS") These

,icCre closcn i:i their complete ritts Jue do tcir I
O:,ov, n projxrtnes as J_-,clolp:.s ot PI.\ A shsti hi:

., :'~ ~~, .'1,20d 11.lit -,(IhLhh tIIV i~~pozrtc, .'b in wl\!Jrc.s (oi

;.\eral solvents are exvremel,, diffi,,:ult or imiPossiblII
' redicl. and such an excr ,ci 'eill tint tl i:i pted

lcrc ini siIrsewucIm sc.tioInS -e tirc a J.l , tail" C

;sl'" .'.n, n : moe role otf lc l ih r.hesi ,-Iiiponcn[lC

". imImIrosire c.ntrasi ,iild 1i!r -,..itc iill- I:-u, i~ omý,

-. "S, ir'. o! ,, nm "\ x ri c

I

S., I 'i111li11ars I', • nnrrast \p'.rlllie lil .,.I','.

"-ample ,,iune 'o ii.;me 7-. e e,.': .p 7.im p
p<a. ercent percent r erccrh "ie
MIESiK -CS MEK ,oc:

i : "____ ' -. I
-.00 -

* 0

66L.4-' t,• "

I .

-9 , . 4 . 2. t .- --

52-i 0 1 45.4 21,5 ;:. IS.

I'1 !9 I4

IiI
I
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I whrT~i h vrg rate oiguedissolutionrat asaMfnisonthe Ie•

uect arween ig ht C nd • is the ri doe.vtdni. thes

.. eopmnt,, tim e anop~ d tt,, isth e nvprilc,:/liare gs t r hickness. S

The ,firstterm . docpends achovn eox: :p(-E ai,/RT werec~ E..
ithe activtiono;'nergy Rha is th'n e eprscostan an Tis ." s

'h tepraue Tis her aloprdctha •

whepend s lineal ondve lope r tie . Thissouin ha s nth :4:

beenivesometigaed and remains for fuituresioks o thicn ss F. uiiy: Pa--ii 'e-ose

Fiure 3rs giesm the depend e n ex of- co! r st) onhigre 4Eendnc it di liin rt

.1 the activationl energy, of Celsolve is signifintandTli

h tmix rtures(eFi. Tis n thereore d1o nodits noraliz tenth o a sovet tueo tipraue

J•pur IBnds thatl o f devlo atm This% mk ae h as eendoontrte b Grenih ,o NIB.'IP

Anep aaond o f o th imteprture andvany ohsF te y boe Param ter ialghly ineaxo sed.

Stheqalt inv latve deedneodisltn rateln on te dsov ir fiinl h ihrS akrm ti

I2

I0

Figue 3givs te de ndece f cntrat o Fiure 4 Deendnce ,)1 dissluton .3122"

i prcntree (ur mthy ehy keon cml•nel) le perluet~e ad ol,:n sreemsu~~n po:E
nomaizd n 9". heCSdaa reomttd ine n ramete mleuar 7 04 Cetdslbun

!n~~~ ~ the' Figure 3.t Plot oft cornetondsn is a1' o function of moecla w gh.• Thsdp nder,..

piure 2IB ai-nd u tha t oi 18c,,ir a l oree v ariou ho ia tien eon stormalied bo 19 entc Co M BKI

I coll~~beapedr ont C h taglln and 21Che icri evdntu hipct s oltos'' eo hscre= h eedneo -

,:re s ob s pcured. iMio n dssribtio ioter theemxpereatusreFist -
AI~i n :ouplaedo w fith e lle .o te prt ure co l ng n of theab epra trssslg lyi re ed :.-

re~coek so lvent sreat ho wn deoeden e fo pelalows Figre4is sol vn quh hags nsuham ne as

I~ ~ ~ ~~, (here rhisthe averaendence of dissolution, rat is the dssle orefiiny hhgerM a. r an,-,

Iueua egt s te ds, Ad i h
!ceom n ieadh sth nia eittikes

Th .iH e m ,d p n s o e p - ,R - h r .C " a
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!!ier normal exposures"' F-'r i.•c caset or "rv siIgtln -olunors c-ontainiin .11ail .LIOunlS I 3 [,'rono
.inounts of ,IEK added :o NIBK. ::'c IrCK .a.1;ts jevcionpr mixed A th a ,•,.Iker one "an c.tian.e ailI
.noeeredently of the ,IlBK to remove efficientlv hien aspects of PMMA Lie, .lopment At;h no Jeleterious

'.I .1-omponents left bchihnd by 11'c MIBK. thus side cffects. !n .ddition. wk.e d;:monsirated
:TIpr`Oing contrast, side wad profiles and proximit, e xperimentally thait coo control ot !,emnerature ,,
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New high-contrast developers Tor polytirlyil
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New developers for poly(methyl methacrylate) consisting of mixtures of common developing
components have been carefully investigated. It has been found that adding a small
percentage of methyl ethyl ketone to methyl isobutyl ketone and Cellosolve results in a
significant increase in contrast. Results of contrast experiments as well as improvements in

electron-beam Lithographic exposures are reported. An explanation of the mechanism of
contrast and resolution enhancement is offered.

I. INTROLNUSTION veloper allowing the exposed pattern to be indented into
the resist. In further processing steps, the pattern is trans-

Very large scale integration (VLSI) technology con- ferred by vanous techniques to the substrate material. An
tinues to push toward smaller geometries with advance- important limitation on the density of the exposed pattern,
merit in the urnm range and experimental circuits such as and in some respects the individual line-widths, is the prox-

monolithic microwave integrated circuits MMICs) in the inity effect which causes exposure of the resist up to sev-
0. 1 jum range. The fabncation of nanostructures and quan- eral micrometers away from the area of the primary expo-
turn devices below 0.1 jim especially relies on ultrahigh sure. As lines are placed closer together, the total dose
lithographic resolution, and as such continues to utilize increases between the pnmary exposed regions, thus lead-
pnmanly poly(methyl methacrylate) (PMMA) as the re- ing to a decreased differential in exposure.' The require-
sist of choice. PMMA continues to find applications in ments of the developer to distinguish between differences in
electron-beam lithography (EBL), focused ion-beam li- dose become more stringent if the pattern is to be resolved.
thography, x-ray lithography, deep uv optical lithography, Ideally, a developer will remove all positive resist that
and, more recently, scanning tunneling lithography.' It is has been exposed to a dose above a certain threshold and
Almost universally the choice for the development of new none of the resist that has been exposed below that thresh-
lithographic techniques since PMMA offers the highest old. In practice, a range of exposures results in partial
known resolution of any organic resist. A drawback to the development of the resist over that range. For this reason,
use of PMMA is that it is generally not sensitive enough higher contrasts allow a narrower area to be developed
for manufactunng purposes, but it does offer extremely completely even in the presence of those factors that
high resolution. For this reason, PMMA remains techno- broaden the exposure. For other lithography schemes men-
logically important. tioned above, similar energy scattering limitations to reso-

The generally accepted criterion of resolution predic- lutioti exist. It is expected that for all types of lithography,
tion of a resist-developer system has fallen on contrast y. higher resolution will result from higher contrast, and the
lHigh contrast can be thought of as the ability of a devel- improvements discussed below will be equally relevant to
oper to discriminate between very small differences in ex- any application of PMMA.
posure dose from one small area to an adjoining one. Ex- Contrast is a measure of the sharpness of the develop-
posure in electron-beam lithography is not precisely ing threshold of the developer-resist system and is defined
localized due to factors including the Gaussian beam cross as the slope of the plot of normalized thickness of the resist
section, forward scattering in the resist, backscattering remaining after development versus the logarithm of the
from the resist and substrate (proximity effect), and the exposure dose. Figure I illustrates the definition of y. The
generation of secondary electrons in the resist.- These fac- onset of development D, is defined to be the dose at the
tors decrease the modulation transfer function of the ex- intersection of the steepest part of the contrast curve ex-
posure for closely spaced patterns. trapolated to the 100% level of the curve. The sensitivity

In PMMA. a positive resist, bonds are broken by inci- Dr is defined to be the dose of the extrapolated curve at
dent radiation (e.g., an electron beam), decreasing the av- zero thickness.
erage molecular weight M of the long-chain molecules. As discussed above, y is a measure of the ability of the
This increases the solubility of the resist in a suitable de- developer to distinguish between gradations of dose. Since

contrast is expressed as

"Author to whom correspondence should be addressed.
"'Present Addre=s: VLSI Reisexrch Department. Lishan Microelectronics

Co. P. 0 Box 19. Lintong, Shaanxa 710600. Peoples Republic of China. , = [log(DIDr)j - , (I)
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suits. Some ol our developer solutions give improvements
of up to 35% in contrast and no loss in sensitivity.

Three chemical solutions are c-ften employed as
LgPMMA developers. These are (1) methyl ethyl ketone:eth-

anol (EtOH) in a ratio of 26.5:73.5: tii) Cellosolve (2-
ethoxyethanol):methanol (MeOH) in a ratio of 3;7; and I
(iii) methyl isobutvl ketone:2-propanol (IPA) in a ratio of
1:3. These solutions are referred to here simply as solution

cc A. or S-A. solution B, or S-B, and solution C, or S-C.
respectively. Pure methyl ethyl ketone. Cellosolve. and me-
thyl isobutyl ketone will be represented by MEK, CS, and

E MIBK, respectively. S-C has been reported to provide very 3
Z high resolution at exposures of 50 kV electrons with a

development time of 15-45 s''-' while S-B has been re-
Of log Dose ported to provide very high resolution in EBL exposures

between 20 and 120 kV with a development time of 5 s. I
FiG. I Plot of normalized positive resist thickne•s remaining after de- It is mixtures of these three common developer solutions
velopment as a tunction of log of exposure dose (the contrast curve) which we have found to give markedly improved results in
illustrating the dehfituons of D. and D,. contrast.

II. EXPERIMENT

For resist exposures, we used an ISI-100B scanning
a higher absolute value of y represents a higher contrast electron microscope (SEM) modified for EBL in a vector-
developer. (In this report, the absolute value of all contrast scanned mode with an exposure spot (pixel) spacing and
values will be used. but are all negative.) The ideal situa- beam diameter of 100 nm each.'5 All test exposures were
tion discussed above in which there is an absolute dose performed at 40 kV on thick silicon substrates. All PMMA
threshold for dissolution represents an infinite contrast, films were of molecular weight 950 000 a.u., spin coated
whereas in practice the contrast is always finite. Contrast is and baked at 160 *C for 4 h, with resist thicknesses ranging 3
commonly measured experimentally for a given develop- from 0.4 to 1.0 jtm. Exposures were arranged in a 6x6
ment time by varying the exposure dose in small incre- array of 50 50 pm I squares. Resist thicknesses remaining
ments through the region of dose that causes the resist to after development were obtained ucing a Dektak II surface
dissolve until total dissolution is achieved. A common profilometer. 3
method for measuring y is to use a surface profilometer to S-A, S-B, and S-C were tested alone and in combina-

measure the thickness of resist remaining after exposure tion using development times that yielded approximately
and development and plot the data as discussed above.3-9 the same dose for complete development and also corre- 1

SAs we discuss later, the contrast parameter is entirely sponded to typical values from the literature. These timesditaediscuss b the disoutontrbeh pavio eter of th enplymr P were 45 s for S-C,'. 2 5 s for S-B,' 3"14 and 2 s for S-A. Thedictated by the dissolution behavior of the polymer. Pa- development time for almost all mixtures of these compo- •
"panu et aL have produced valuable fundamental work on nents was 10 s. This time was based upon the relative
the mechanism of PMMA dissolution in one- and to strength and concentrations of the components used uo the
solvent developers, and for different polymer molecular mixtures and was estimated initias y to field the same tine
weights. )0 Their experiments gready clarify the role of to complete development for approximately similar doses.

thermodynamic quality of the solvent on the rate and The range of developer temperatuies represents common
mechanism of polymer dissolution, but only for one- and fluctuations caused by varying room conditions, evapora-
two-component developer mixtures. Here we approach the tive cooling, etc. 3
more complex case of a multicomponent developer and, on Development was performed by holding the samples
more practical grounds, we study the effect of solvent qual- with tweezers and dipping in the developer with light agi-
ty (in our case various mixtures) on the rate of dissolution tation for the required time. Temperatures during develop-

of electron-beam-exposed PMMA resists. We explore corn- ment were determined by inserting a mercury-bulb ther- 1
binations of common developers to ascertaia whether or mometer, calibrated to I *C, into the beaker. Developer
not improvements in the lithographic process could be pro- times were controlled as much as possible by careful atten-
moted simply by using readily available mixtures of sol- tion to the process. Significant error occurred only in the 3
'ents. possible case of S-A with a 2 s develop (estimated at less

These new developer solutions are mixtures of chemi- than 20%), but this data was used only for crude compar-
cals that have been commonly employed individually as ison as will be discussed below. All samples were rinsed for
developers for PMMA. but which when combined exhibit 15 s in MeOH immediately after development and blown
higher performance than when alone. Our combination of dry in rutrogen.
these cheraicals has shown improvements in achievable The unexposed dissolution properties of the three de-
contrast of PMMA as well as improved lithographic re- veloper components were tested to ensure that normalized
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FABLE I. ReMuiLs oi contrast expcnment iwentined ov %ampic numoet, -7n•ntr.jti,.jio1•. •mu .t• I, •.IT IL MUTP ,-C

Volume Percent Develop
Sampie !:me -cmrterrJture

1o. S-C S-B S-A \IEK

31 3 100 0 '1 5 7
1 100 0 ' '0

,0 0 0 0 45 '0

4 100 0 0 45 21 ' 3
34 ,2.0 1 6 ,424 0 .

S0.4 32.0 1 6 :424 10 13

496 48.0 2.4 0.(j36 10 S 2

8 49.6 48.0 2.4 0.136 10 5.5
09 40,1 45.4 4 5 1 19 10 Is 9

10 Co0.1 45.4 4 5 I 1q 10 .9
II 01 45.4 45 ! IO Q' 94

'0 I 45 A 4.5 1 19 10 99 9.4
013 .0,1 45.4 4.5 1 19 10 i 9 1

14 -0 I 45.4 4 5 1 19 10 IQ 8.8
15 0 95 5 1.19 5 1 12 8

16 0 0 100 100 2 19 4.7I
thicknesses were not compromised by excessive dissolution III. RESULTS AND DISCUSSION
rates. This was necessary since the profilometer technique The results of our contrast experiment are shown irt
can only measure resulting resist thicknesses with respect Figs. 2 and 3. Figure 2 shows contrast curves for the three
to the unexposed portions. By soaking for several hours, o. nal developers, S-A, S-C, and S.B. For the data

S-B and S-C were found to yield unexposed Jissolution ong deveoptrst S-Ai S.C. and for he a
rates of 2.8 and 0.5 A/min, respectively. The harshest de- shown, the contrast for S-A is 4.7. for S-C 70, and for S-B
veloper, S-A, displayed the highest dissolution rate of SI 517. It is ,mport cst to note. as will be demonstrated below,
A/s. However, even this rate was still small enough to be that small differences iven tr c be very. important to
negligible given our initial thickness and short develop lithographic results, given the toga.thnbc nature of thetims fr mxtue• ontunig een mal amunt o plot.
times for mixtures containing even small amounts K. Figure 3 shows contrast curves for two mixtures of the

Dehe three common solutions. It can be seen by comparing Figs.
Data were taken for the three developer components and 3 that the sensitivity of the mixtures is approximately

alore as well as for a vanety of mixtures of the three com- eh sm aypewentateofponets.Conras wa deermnedfro th stepet sope the same as that of S-C, failing midway between that of
ponents. Contrast was determined from the steepest slope S-A and S-B. This is an extremely desirable trait of a de-
on the graphs of percent resist remaining versus the log of l-A and that an increme irasde not lead
exposure dose. The steepest slopes were determined using a teloper, namely, that an increase in contrast does not lead

nearto a decrease in sensitivity of the resist-developer system.

loieThis is more significant considering that the develop time
points. Special care was taken to apply exactly the same for the mixtures is only 10 s compare with 45 s for S-C.
criterion for the determination of steepest slope in all cases.

The mixtures of the developers were investigated to
show the effects of varying primarily the S-A concentra-
tion. It was deemea that S-A is such a harsh developer that
its overall concentration should be very low, and also that

the properties of S-B and S-C are similar enough that their
concentrations should also be similar. However, higher : "
concentrations of S-C were included in the mixtures since -
it yields generally higher contrast than S-B. Since S-A was . 6

-- found to give low contrast by itself at an MEK concentra- "1 *SA ,
tion of only 26.5%, we investigated primarily the range of a )4

very small MEK concentrations. For these reasons, the S.C :sampi 3)

three mixtures investigated were S-C:S-B:S-A in ratios of N • sna .•sm ,,
_ C 2

42:20:1. 21:20:1, and 11:10:1. We consider the most impor-
tant parameter to be the S-A concentration, which in the "
above mixtures is 1.59%, 2.38%, and 4.55%, respectively. ._
This corresponds to an absolute concentration of MEK in . • 0 0
the total mixture of only 0.42%, 0.64%, and 1.2%, respec- Dose iCoulcm

tively. Please note that mixture ratios are expressed in units
of S-A volumes, and percentages are provided in Table I. FIG. 2. Contirast curves for the three ongrnal developem.
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FIG 3. Contrast curves for mixtures of the onginal developer compo- I
• •ents. Ratios are S-C:S-B:S-A. I
This implies that the mixture must offer higher sensitivity
ihan S-C or S-B alone if development times are increased.
In addition, it is shown in Appendix A that contrast is 1
-,redicted to increase for increased develop times but only
ior an increased solubility, as in our case of added MEK.
This implies that further study would indicate a possibility I
. achieving even higher contrasts coupled with improved

sensitivitv for longer develop times. In practice. the opti- -

mum exposures for highest resolution correspond to the (b)
dose at D., of Fig. 1, where D, must decrease for increased
develop time. This has strong implications for the viability 21! hotomicroeraph• .i iest plte. ous.rattng roproved contraI

of improving the throughput of processes utilizing PMMA ,or new de~eiomnr The tcs( patterns onsist oi parallel lines of decreas-
for high-resolution conimercial applications. ing pitch in the outxard directions. rossing in a vanable-pitch gnd pat-

We have observed markedly improved lithographic te- at the corner. Ligni areas indicate severe loss ol resist betw-en the

performance using the new developer mixtures. Figure 4 exposed lines. Both patterns %%ere exposed under identical conditions, but
developed -a; 5-C or 4,.no h S-C .S.BS-A 1 lO0: for los r'he

shows photomicrographs of test patterns consisting of sets appearance ti less 1!2ht area in h, implies that the mixture has provided
o, parallei lines of decreasing pitch to 0. 1 /um in the direc- much higher contrast than Ihai ,i S-C in a i
Iton of the outside of the pattern, and overlapping to form

a variable-spaced grid in the co-ner. Both test patterns I
were exposed on a single sample under the identical con- simple matter of sensiiiitv and overdeveloped exposure.
Jitions of resist thickness, bake temperature. bake time, since the sensitiitv of the 11: 10:I1 mixture is almost exactly
dose, line spacing, and beam energy. After exposure the the same as that ol'S-C as can be seen by comparing Figs. 3
patterns were separated and developed as discussed above 2 and 3.
using S-C for pattern 4(a) and S-C:S-B:S-A 11:10:1 for Figure 5aa) ;ho\s, a gnd pattern developed by the S-13
pattern 4(b). solution. The linewidths arv by about 25% toward the 3

The resulting improved contrast can be observed from interior of the pattern. Figure 5(b) shows a pattern devel-
the variations in light and dark areas. One expects that as oped in S-CS-B-S-A 11:10:1. There is almost no evidence
the parallel lines are exposed closer together. the proximity of linewidth -anations over the pattern due to the higher
effects cause some exposure of the spaces between the contrast of the 11:10:1 mixture versus that of the S-B. In 3
lines.2 A lower-contrast developer will dissolve the PMMA addition, lift-off properties ate affected by contrast. Figure
at the lines of exposure and also remove much of the resist 5(a) shows a typical example of metal flakes left from the
between the lines. This is the cause of the light areas in Fig. unexposed areas after ! lift-off step in acetone. Figure 5 (b),
4(a) as the line pitch decreases. However, a sufficiently however. shows the consistently improved lift-off achieved
higher-contrast developer will remove mostly the resist in due to steeper sidewalls resulting from the higher contrast.
areas of direct exposure and less of the resist between the The patterns of Figs. 4 and 5. then, help demonstrate that
lines. This is the case in Fig. 4(b) where there is clearly the new mixtures provide usably higher contrast compared
less light area, showing that the resist remains intact be- with conventional deveiopcrs.
tween the lines even in the presence of identical proximity Table I shows the contrast for vanous percentages of
effects to part 4(a). These results cannot be explained as a developer solutions and temperatures. A plot of contrast as
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FIG. 6. Plot of Y as a function of percent MEK. unoorrected for temper-
ature dependence. Sample number and temperature are noted for each
datum.

about a 1.3% increase of MEK concentration in the mix-
ture results in more than a 35% increase in contrast, and
that further improvements can be promoted by simply in-
creasing the temperature.

The fact that S-B does not fall on the temperature-
lb) compensated line can be qualitatively understood by noting

FIG. 5. Grid patterns tormed by EBL exposure at 40 kV on GaAs sub.-
azrates followed by devclopmcnt and lift-off of 40 nm gold. ( a) decloped

'.I S-B and (b) developed in S-C:S-B:S-A 11:10:1. Note decreased line
broadening in (bl vs (a) indicating higher contrast of the mixture over 14 T,
S-B. Also note typical improved hfi-off as a result of steeper edge proliles
due to higher contrast.

12

a function of percent S-A. uncorrected for temperature
Sdependence. is soni Fig. .Atedo increasing y, as
S-A is increased is indicated. The same data, but normal- E 10 9-14

ized to 19 'C. are shown in Fig. 7. (Note that contrast data '8

shows no correlation with the initial resist thickness, which • 5.6

is accounted for in the process of normalizing the remain- F 3.4

Ing thickness after development.) The temperature nor- A _L .I-04sC

malization assumes an Arrhenius behavior with an activa- 6
tion energy of 24.3 kcal/mol. found by fitting contrast data 1.2
at a fixed S-A percentage as a function of temperature. This

m alue is intermediate between that found by Cooper, Kra- 4

sicky, and Rodnguez ;" of 25 kcal/mol for MEK and that 00 0 2 0.4 0 6 0 8 1.0 1.2 , 4
reported by Greeneich7 of 24 kcal/mol for MIBK. In the
case of Fig. 7. a trend of increasing contrast for increasing %I643

percent MEK is now clearly evident. The data, including
S-C. collapse to a straight line of the least-squures fit very FIG. 7. Ploteofn sa functmn of rent MEK. cormted foru emperaturecloelyexcpt or he aseat -B t 0 ME. (recse dcpcndenc, by normahunng to 19"C. lThe normaizzataoo assumes an
losely except for the case of' S-B at 0% MEK. (Precise Arrhenius dependence with an activation energy of 243 kc&l/mol. Notice

Iemperatures were not available for the case of 0.42% and that the points in Fig. 6 corresponding to sample no. 4 (21 TC) for pureIUl.b4% MEK. The bar in the figure is not an error bar, but S-C and that of samples no. 9 and i0 (IS *C) at 1.19% MEK have

represents calculated uncertaintv of plus or minus 0.45 *C collapsed onto the straight line and are now obscured on the graph by
- nther data points. The bar in the figure ii nt an error bar. but represents

based on the known valne ot the activation energy centered calculated uncertainty of *0.45'C based on the known valu e of the
about 19 *C.) It is stnking that within this linear region, activation energy centered about 19C
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that both MEK and MI-K are Ketones. wtriu Ln 1 .- IAABLL i., Molecujac weignt anti oituomtv, pardnicterr or ewaa wompo-
ethoxyethanol) contains both alcohol and ether groups. ent tim the mixtures. The distance A is included tor each component

The chemical compositions of MIBK and MEK are very M 6, N. -1 1
'imilar. uiffenng only by two aliphatic carbons. In order to "omoonent .g/mol) [(MPa)' ( (MPa) :1 [Oira)'`1 j(MPP)" `
uinderstand the dynamics completely, one would need to
• onsidcr a full thermodynamic and transport analvsis in- %IEK ?2 14.0 4 3 '5 4
,,Oivi six components. A compiete analysis is beyond the EHOH 40 12.0 112 20.0 12" " • IBK 100 14A4 1 5ý9 14" cope of this work. but a simple explanation of the role of IpA f 140 8 1 -5

:he components is given below. ,.s 40 130 ,1 15.2 ( 8

Previous analyses of the development of EBL.exposed \JH 32 1 I. 1 3.0 24 0 lb
resist show that measured decrements of normalized resist MMA 90 13.5 10.l 8.S

thickness upon exposure (i.e., the contrast curve) should
be directly proportional to the rate of polymer dissolution parameter space, A is the distance between the end points I

see also Appendix A). For a given developer system, this of these vectors. We therefore refer to A as simply "dis-
rate depends on the average molecular weight of the ex- tance."

posed polymer, which in turn is a function of the dose. It is expected that the greater the distance A is, then
Appendix A shows that contrast is expected to exhibit the the less efficient the component is at dissolving PMMA, I
same temperature behavior as that of dissolution rate and and therefore the lower is the solvent quality. Such mea-
explains our observation of increased y for developments sure of compatibility is consist, --t with the idea that polar,
performed at slightly higher temperatures where dissolu- dispersive, and hydrogen-bonding forces can, in principle,
tion rates are in general higher. We found that at all S-A act independently. (For example, two chemical species,
concentrations, y increased with temperature between 18 one strongly polar but nonhydrogen bonding, and the
and 21 'C. With the exception of only the S-B data, all other weakly polar but strongly hydrogen bonding, could
ither data properly collapsed onto the best-fit line as a have the same global bility parameter and yet be im-
:'unctioa of temperature as suggested by the above theory., miscible. This is the s. as saying that the length of 6, in

The main factors that affect the rate of solubilization of solubility space is the same for each species, but their di- 1
a polymer in a solvent are the plasticization and thermo, rections vary greatly.) Thus only those solubility parame-

dynamic comtpatibility, or solvent "quality." Plasticization ter components pertaining to congruent energetic interac-
refers to the ability of the solvent to penetrate the polymer tions should be compared.
and increase the free volume,5 1  .iaking it more vulnera- The calculated values of A for all pure solvents com- I
ble to dissolution. The rate at which a solvent can plasticize pared with MMA. along with the molecular weights of
d polymer is related to its molccular size and therefore its each component, are given in Tablc II. Again, the pt: .ti-
m( ':ular weight. Gipstein et at°20 reported a noticeable cization. or molecular weight, of the individual conpo- I
Wot at-size effect in the dissolution rate of atactic PMMA nents must also be considered in explaining their role in the
in a homologous senes of n-alkyl acetates. They found a solutions. Table Ill indicates the order of each developer
precipitous drop in dissolution rate for increased pctnetrant component in its ranking of plasticization and solvent qual- I
molecular weight. As an approximation we will uý - molec- ity. We can see that MEK is indeed the best solvent but
ular "eights as an estimator of the relative ability of the rates fourth as a plasticizer. In S-A, the EtOH serves as a
,olven, _oniponents to plasticize the exposed PMMA. diluent and to help in plasticization, being ranked second

The solvent quality is related to the imatch between in this regard. These two facts help to explain why S-A is
three thermodynamic parameters of the solvent and the such an effective solvent of PMMA at 3060 A/mim for a
polymer. The closer these are. the higher is the thermody- molecular weight as high as 950 000 a~u. This also helps to
namic compatibility resultinR a a higher dissolution rate."' explain why S-A exhibits the worst contrast, since it
These parameters are the three components of the global strongly dissolves PMMA of all molecular weights. -\I-
solubility parameter 6, namely the dispersive, polar. and though CS ranks third in solvent quality, it appears aiat
hydrogen-bonding components, 6 d, 6., and 6h, respectively, the presence of MeOH in S-B, ranked first for plasticiza- I
where tion, helps to increase the effectiveness of CS as a solvent.

62 = 62 6 (2 Regarding S-C dissolution, the component MIBK is rated

TABLE Ili. Ranking of plasticizaton and solvent quality for each com-

We have found it useful to compare all of these com- pon-_t of the developer solutions.

ponents in an attempt to explain our results. In companng MEK EtOH MIBK IPA CS MeOH

the similarity of the three solubility parameters between
the developers and PMMA, we have defined the parameter Di tanc I 4 e2 34 o

.M (g/mol) 72 46 100 no 32Z3> 1/2 Sovn qaiy 1
A -1 6p, .,) -- (6A, - 6h,)2 (6di - 6d,) 2  (3) oiesquitSrank I

Plasticization 4 2 6 1where i indicates a developer component and j the resist. (rank) ISince 6, is the length of the solubility vector in solubility -
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.Vltr is mucth Illitler If•an lor caner 3-L or uuute mr.l in

solution. and given the lower value of r for S-A, rd for S-A
- is expected to extend to higher molecular weight with a

lower slope and approach a constant for very high molec-
, • A ular weights (similar to MIBK in Ref. 17). Portrayed be-I low in the figure are qualitative molecular weight distribu-

mi.,x tions of a fully, partially, and unexposed polymer. By
S.adding small amounts of MEK to S-C. we have affected the

SS-8 .solubility properties of the S-C as shown in the MIX curve
Sto dissolve the higher-molecular-weight fragments far

CI more quickly while changing the slope of the curve only

-; I I "•' slightly for the lower moleculpr weight. To first order, we
. L I ) ci\ expect the solubility properties to be affected little for

lower molecular weights, but increased substantially for

t I oM higher. (A thermodynamic model that qualitatively sup-
Fully partially Unaexoisd ports this assertion is presented in Appendix B where we

Exposed Exposed analyze a two-component developer system by assuming

that the rate enhancement derives exclusively from an in-Icreaec oye ouiiy ihs eei ocnrs
FIG. 8 Explanation of mechanism by which trace amounts of S-A i case in polymer solubility.) Highest benefit to contrast
increases contrast. The solubility curve for S-C alone is compued to the and resolution is achieved when the cutoff of solubility for
expected curve after the addition of a small amount of S-A (MIX) and the new mixture is above the highest molecular weight of
S-A alone Isee also Ref. 17) Contrast is improved through the increase the fragments in the primary exposed area but is below that
of P, for higher molecular weights with only slight change to r, at low
ones. Below the graph are molecular weight distributions bor (a) fully of the marginally exposed resist for a slightly lower effec-
esposed. (b) partially exposed. and (c) unexposed PMMA. The shaded tive dose in a closely adjoining area. This can never be
region corresponds to those molecular weights that require large exposure achieved totally in practice, as the distribution of fragment
doses to be further fragmented. It is preferable to use the lowest exposure
dose possilie to achieve the highest resoluuon. The addition of trace of molecular weights in the adjoining areas is a continuum
S-A increases the solubility of these fragments. and overlaps that of the polymer in the primnw y exposed

area.
In our case of mixing the three components S-C, S-B,

second as a solvent but is the poorest plasticizer. Isopro- and S-A, Fig. 7 indicates that the contrast improvement is

panol being ranked only third as a plasticizer helps to ex- dominated by the presence of MEK. We believe, however,
plain why S-C dissolves the unexposed PMMA at only 0.5 that a more complete study would indicate that each com-
./min. ponent enhances the solubility in a range of molecular

As mentioned above, prediction of the solubility prop- weights yielding an effective characteristic in which all
erties of systems containing many solvents can he very fragmented molecular weights in the primary exposed ar-
complex, and only a simple qualitative explanation of those

proper eoff heuar. Wighinthex wosed reas arc removed, but little is removed outside. It must be
proper'ties can be offered here. Within the exposed resist, a kept inmind that the average molecular weights of the
distribution of molecular weights exists whose average de- p A in crease quickly with disan e

pends on the exposure dose.' 2 Under conditions of low- PMMA fragments increase qicly with distance away

level exposure. the inability of a relatively high-contrast from the beam. The goal in choosing a correct exposure for
developer, such as S-C, to completely remove the PMMA chieving high resolution is that the top of the range of
in the primary exposed area is due to the presence of high- fragment molecular weights in the primary exposed areamolecular-weight polymers that have not been exposed s- lies just in the range dissolved at an appreciable rate by the
prleseculrwih oyesta aentbe xoedsf traeaonso E ntemitrs hthg-
ficiently to be broken into sufficiently small strands. The trace amounts of MEK in the mixture, so that high-mo-
presence of a small percentage of MEK increases the over- lecular-weight fragments are seletively removed from the

all thermodynamic quality of the solvent, causing those area of primary exposure. It is possible to conceptualize an

remaining long-chain PMMA strands to be more selec- ideal developer whose properties are described in Fig. 9.

tively removed without a major change in the solubility This developer would have "break points" in the rd vs 81

I rate of the unexposed or less exposed areas. This argument curve that tailor the dissolution rate to the molecular

is supported in Appendix B. weight distribution curve. This ideal developer would then
The above argument is plausible when discussed in be assured of dissolving no more of the higher-molecular-

light of Figure 5 of Ref. 17, which gives solubility rates of weight fragments than was absolutely necessary for a given
MIBK solutions as a function of fragment molecular exposure dose, thereby minimizing the erosion of the
weight M. We discuss here a two-component system that lower-molecular-weight fragments (relative to the unex-
can be extended to more compon-nts. Figure 8 shows a posed areas) in the less-exposed adjoining area. ([hese
qualitative curve of dissolution rate rd versus fragment mo- arguments are further supported by the theoretical piedic-
lecular weight M after exposure for a single developer, e.g., tions for a binary developer as discussed in Appoidix B,
S-C, and also a proposed curve for the two-developer mix- and in Fig. 10.) Our three component system is a crude,
ture S-C + S-A (MIX). Since the dissolution rate for pure but demonstrably effective, attempt at achieving this goal.
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3 c~ýignts tit inc pnniar% exposed i chiotis it) more elincicnitis
_ _ lear the e.'poý.ed PMMA without affecting unexposed ar-

" " .We feel that in %lew ot the substantial improvements oti

the contrast of PMMiA and demonstrated improvements in
Smninimizlig the proximity effect, the use of PMMA can be

further iu,tified for ultrasmall geometres in future special-
tied inteerated circuits and optical and \-ray mask fabr-
cation applications. In addition. ..s Ititure x-ray sourcesuioecuia, w~gmin become more favorablewthherd-ff spotl Iincrease in brightness, the feasibility tt using PMMA will

volauia wwrit ecoe mre fvorblewith the t~rade-off in support of

resolution \.ersus speed becoming more advantageous.

FIG 1) So.ubilitv curve for a conceituahzed "ideal" developer supernm-
piosed on the distibution oi iragmnc" mnoliuia %eights lot PIMA The ACKNOWLEDGMENTS
.hape o, the solubility curve ensures that dissoluition rates !or each mo-
lecula, weight are no higher than ne csary to dissolve all molecular The authors would like to thank J. P. Kohn and D. K.
weight fractions completely. thereby minimimnng erosion of areas adjoin- Ferry for helpful discussions. Also. we are grateful to KTI
i ng ihose o pnmary exposure. Chemicals for providing matenals. This research was sup-

ported in part by IBM. AFOSR. ONR. and the University

of Notre Dame.

S IV. SUMMARY AND CONCLUSIONS I
We hvivAPPENDIX A
Wl have investigated new developer mixtures ior Here. we show that the contrast -. is proportional to

PMMA positive resist. We demonstrated that adding a the rate of polymer dissolution. We consider the dissolu-
'mall percentage of methyl ethyl ketone to methyl isobutyl
ketone/Cellosolve solutions increased contrast substan- ion ot a polymer im of uniform initial thickness h,. The

tia~ll. This was illustrated in practice by a companson of polymcr has an average molecular weight .1. Exposure to
Lv. exposures wach demonstratidn g dcriceasd c paroxom a developer solution for a time at, will cause partial ero-

EBL exposures each demonstrating decreased proximity son of the film, and the removal of a laver of thickness Ah.effect. I eeaw a rt o %•h,

The mechanism for increased cont ,st by adding trace In general. we may wnte for %

amounts of MEK was explained in terms of selective Ah/h 0 = r.ltdho, (Al)
broadening of the range of solubilities for S-A in S-C/S-B
solutions. It was concluded that the presence of MEK in- whcrc ,, is the avcragc ratc of disslution. which depends
screased the range of dissolution of fragmented molecular on M.f temperature T, and solvent quality. Expenments•iindicate that

r, = f( .-fT, solvent quality)exp! -- iR T). f ,

Iwhere E, is the activation energy for dissolution, R the

ideal-gas constant. andfa function of solvent quality, polv-
iner molecular weight. and F. The exponent a. a postive
real number. may also be a function of M. T. and the

S2% ot secono EoIvent solvent. Within certain ranges of M. however, such depen-
\ denctes off and a are weak, so that the main effects of T

r and M are accounted for predominantly by the Arrhenius
Cand power law, respectit
"" For a polymer exp .o radiation, the average mo-

10I lecular weight depends or, the exposure dos e. D
si •nca soient -,f(D). Thus the after-development normaized thickness

of an exposed resist will depend on -he average polymer I
molecular weight M. which, in turn. is a function of expo
sure dose D. The contrast y, defined as

.o0 I
= max ,--- A3)

Moleculiar Weign where the term on the right-hand side can be expressed as

FIG. 10. Calculated rate of dsasoiutiton for a single solvent and also that d( Ahlh4) J(rd~11l/ho) aC log rd . d log A -AId
,olveni combined with 11, of a second solvent as a function oi molecular- ( d D

.Ae1gh:. The mixed curve has been calculated from Eqs. (B7) and (B8) d log D a log D " og., og D h
assuming (x,/x,, = M/IOO. 'A4) 3
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Equ'ition (A4) shows explicit;y a proportionaity Metikeen i at ine polymler is munooisperse, anu tnat tne soliu pre-
and r.. Furthermore. for exclusively Arrhenius temper- cipitate is always made exclusively of polymer. with no

ature dependence and a power-law molecular weight de- appreciable amounts of either solvents.
pendcnce of r., as in Eq. tA2), we will hase Yhermodynamic equilibrium requires that the chemi-

Lal potential ii of the polymer in the solution and in the
l'og ra solid must be equal. i.e..

lo =MLý and / =Li (BI)
Ind

_whcie. again, component I is the polyiner, and S and L
M, ,= function of D only. i) ,tanid f•r solid and liquid, respectively.

d log D In both cas'. the solid is a pure polymer, i.e.,

which are both independent of temperature In this case. = : .B2)
the contrast will show an Arrhenius temperature depen-

dence, with the same activation energy as the dissolution thus

rate. This supports cur observations of increased ) for L. L.* (B3)
higher developci iemperatures. I I *

Interestingly, from Eq. (A4) we see that for a fixed Expressions for the chemical potentials of the various
rate, temperature, and M(D) functionality, a lower value of components in a ternary mixture of a polymer with twoI: Will always give lower contrast. Greeneich' has shown solvents l-ave been given by Florv,' for the polymer we
expenmentally for dissolution of PMMA inl MIBK.IPA hase
that the slopes of logtr.) vs logtM) decrease appreciably

with increasing solvent quality (i.e.. tor larger MIBK:IPA l - t R T[In (hi + ( I - 6i) - ,d!xIx') - d3(x/x, )
fatios. indeed. for pure MIBK. after a relayively sharp
zransition in slope at Ml around 10 a u.. the curves esen- - i -1-0- 101) - 6J

tually approach a constant i.e.. ) In this case. ac- (14)
cording to Eqs. (A4) and ( A5) the contrast should either
approach zero, or, more realistically, become very small. where the suprscnpt 0 refers to the pure. amorphous.
This is consistent with our finding that films developea in polymer at the same temperature T and pressure of the
pure S-A. an extremely strong (good) solvent. always solution, R is the ideal-gas constant, and x , x,, and x are
showed poor contrast, in fact, poorer than those developed quantities proportional to the molecular volumes of the
in either S-C or S-B polymer I. and solvents 2 and 3, respectively. Additionally.

id is the volume fraction of species i (i = 1,2.3), and the

APPENDIX B interaction parameters -,s are given by

We propose here a simple explanation of our hndings. t, = zAt,:xI,/R T, (B5)

based on the hypothesis that our observed enhancement of w
contrast with traces of MEK is due to purely thermodyv- whr iseati on number and t
namic factors. This hvpothesis is reasonable, since MEK is tar interaction energy between species n andj.such a strong solvent. We a,•sume the ratio of ihe dissolu- Note that Eqs. t 14) and tB5) have been proven to be
tioci rasterand thsolvntrWeatsst he)ratio of the stm ith E t of only limited accuracy, even for simple binary systems,tlioi rate t and thus contrast ) of' the system with MEK to ... .'

that without it to be proportional to the corresponding and especially for dilute polymer solutions.1 The predicted

ratio of polymer %,olume fractions. This functionality is trends are generally correct, however, and consistent with
consistent with the idea that any multiplicative factor most experimental evidence. Thus, this model should be

able to capturem at least qualitatively, the main phyolCS Of
quantifying rate enhancement should increase with poly- o pre.
mer solubility, and approach unity at zero MEK concen- Eur p Blem.
raton.Equations B4) and (B) can be used to calculate the

chemical potential of the polymer both in the presence and

\olumc fraction in solution causcd by the presence of absence of component 3. Because component 3 is very di-

traces of a third component in an otherwise binary lute, the following approximations can be made:

tpolymer - solvent) and biphasic (solid polymer 61)'-1 l. , 6 •' L 6L0,L L-

- solution) ,ystem. This can be done within the frame- 1

%sork of solution thermodynamics. Ftm Eqs. B3)-BS) we obtain

We consider two equilibnium systems. The first one. a I . (+ (•'x3RT)
two-phase two-cornponent system. comprises a pure. solid ln(dt,'1) : . . -
polymer ý phase S) in equilibrium %%ith a solution of poly- (B7)
mer icomponent I ) in a solvent (component 2, phase L).

The second system (denoted here by an asterisk) is iden- Thus. an exponential enhancement in polymer solubility is
tical to the first one. cxcept for the presence of traces of a predicted to occur upon addition of traces of component 3,

,econd solvent tcomponent 3) in the liquid. We assume provided that:

l074 a AppI Phyq, Vol 71 No 8 IS April 1992 3emstein. H;II, ana Liu 4074



( '[I + 6tn(zx,/RT)(Aw,- - AWl - 1wI J I>0. die argument. Lhe exponentiua can oc dpprwxlmateu d.,,

B8) straight line. From the temperature-normalized contrast

For13-. I. the increase can be- substantial. mince ixx,) as data we obtain (3(xix,) = 24. which is reasonable, in light I
proportional to the ratio of the molecular weight of the ot our many anproximations, and, possibly, some more

polymer to that of component 3. Notice that an exponen- fundamental limitations inherent to the thermodynamic
'tal increase of the ratio • ./ ) wit' polymer molecular model itself. Again, it is worth noicing here that, given the

-veight does not necessarily imply an unbounded increase crudeness of cur model, such "theoretical" results should

of polymer %olume fraction, since for higher, insolub!e, he considered only for their qualitative value.

molecular weights, the decay to zero of di will be faster A rate-enhancement curve, calculated from Eq. B7)
than any concomitant growth of the enhancement factor, by assuming 43 = 0.02, 3(x 1/x .) = (M)/100, and an in-
Flory, in his analysis of polymer fractionation by selective verse-square dependence of the dissolution rate on M, is
precipitation from binary mxtures, derived an equation given in Fig. 10 (Note that we have arbitrarily truncated
jsee Eq. (23) of Ref. 211 that is very similar to Eq. (B7). the enhanced-rate curve, since it would have shown an

In order to obtain the sign of / in Eq. (1B8) it is nec- unrealistic upturn for higher molecular weights, due to our
essary to estimate the differences of the interaction energies assumption of a fixed inverse-square dependence of the 1
between the various components. Following Gordon and original rate for all molecular weights. In reality, due to the
Taylor2 ' (see also Ref. 18) in a semiemptrical approach, finite solubility of higher fractions, the dissolution rate
we assume the following proportionality [see Eq. (3)]: eventually drops to zero much faster than M and no

Aw,,ac .-. = [ (6, - ) -- (6d,- .)" (8k, -- 5,)2J, upturn in the net rate occurs). Figure 10 should be corn-

(B9) pared with curves I and 3 in Fig. 5 of Ref. 17.

where I and j denote the particular substances, and 6.,, 6ý,
and 6,• are the polar. dispersive, and hydrogen-bonding
•-omponent of the solubility parameter, respectively. In
our case ki. A M-icCord and R. F W. Pease. J Vac. Sci. Technol. B. 6. 93

kAw -- 1Ut12 - Aw 13) - (A;1 - 1 - A 3). B10) 1988)

D. C. Joy, Microelectron. Eng. 1, 103 f 1983).

Hence, the sign of th: interaction energy term on the left- "w. J. Cooper, P D. Krasickv, and F. Rodnguez. Polymer 26. 1069

hand side can be estimated from the properties of the pure i1985).
'W. M. Moicau. Opt. Eng. 22. 181 (1983).components. (Further theoretical refinements would re- 4S. Mackie and S P Beaumont, Solid State Tcchnol. 28. 1!7 ' 1985,

quire that the factor of proportionality between ,w,1 and 'B. K. Daniels. P. Trefonas. and 1. C. Woodbrey. Solid State Technol.
tI be a function of the molar volumes of the various com- 31, !05 (1988).

ponei,ts. Such refinements are not deemed necessary here, M. A. Mohain and J. M. C. Cowie. Polymer 29. 2130 (1988).
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Determination of Fixed Electron-Beam-Induced Positive Oxide Charge

G.H. BERNSTEIN. S.\\ POLCIoI4p'EK. R. KAMNTH. W P')ROD

Depanrment o0 Elecincal Engineenng. L'nmersitv ot Notre Dame. Notre Dame, Indiana. USA

Sumnmar: Contrary to previous beliefs, electron-beam- tripped charge can be either positive or negauve, depend-
induced positve charges in insulators persist where creat- ing on the beam-accelerating voltage, the thickness of the
IId for at !east s,eeral weeks without discernible move- insulating layer, and the nature of the substrate. Typically.
ment. Formerl.'. coating with a thin metal oserla, was at higher voltages. SEM images of thin insulators on con-
thought to alloy, the charge to leak away. Coating with a ducting substrates appear dark because of trapped positive
conductor is shown to shield electnc fields from affecting charges left behind by secondary electrons ejected by the
the imaging probe. but to remove no charge from the spec- primary beam. It is commonly believed that the coating ot
imen. A new technique is introduced for the c-,aluation oi insulaung specimens oy a conduc., e laver causes this pos-
tne propertes ot electron-beam-induced posiuie charges in tive char2c to be drained awa.• from the imaging area. thus
metal-oxide-serruconductor MOS capacitors. NS stnic- eliminating distortions of the probe and restonng usable
•ures were subjected to partial area exposure in ascanning resolution iGoldstein ý,r al. I'4f I. A nuisance in SENt
electron microscope. These exposures resulted in the cre- imaging, excess positive charge in the gate oxide of metal-
aIoon of areas of localized positive charge within the oxide, oxide-semiconductor MOS) devices i McLean ei al. 1989.
which was observed as steps in the capacitance-voltage Nicollian and Brews 1982) can be created by electron
data. A systematic study was performed. It related the beam processing used in certain integrated circuit fabnca-
exposed arca to the step height and the amount of induced tion and analysis techniques. With electron beam iithogra-
charge to the voltage shift of the step. A model descnbing phy. metal over- or under-layers are used to reduce the
ihe observed phenomenon is presented. followed by a charging effects dunng beam wnting of nonconductive re-
comparison of theoretical and expenmental results. The sists tHenderson 1980). The precise properties and behav-
progress of the charge over time was studied by perform- ior of the induced charges in insulating films are uncer-
ing capacitance-,oltage analysis 30 min after electron tam. Although in MOS structures much is known about
beam exposure and up to 4 weeks later, the creation. minimization, and annealing of e-beam-in-

duced bulk oxide damage tBalasinski et al. 1988. Keenr
et ai. 1976. Sah et al. 1983. Shimaya etal. 1983). details of
th! behavior ot localized positae charge within oxide lay-
ers are not fullv understood. This is partly because an easý

Introduction and accurate method to monitor localized oxide charge has
not been established.

Charging of - mens is a common problem encoun- For the first time we can report that electron-beam-in-
tered in the irr .g of all insulating matenals in a scan- duced positive charges remain fixed where created. To de-
ning electron t,-.,oscope tSEM). In general, the details of monstrate this. we have developed a technique that uses a
the charging mechanism can be a complex function of certain structure in the capacitance-voltage tC-VI curves of
beam ano matenal parameters. Krause and co-workers MOS capacitors. This structure can be used to yicld valu-
( Krause et al. 1989) have demonstrated thai in thin films. able information regarding the location and amount of

charge deposited in SiO 2 in a MOS structure. Using elec-
tron beam lithography, we accurately exposed partial areas

Iof MOS capacitors with known electron doses. This served

to effectively create two capacitors in parallel. with one
metal gate. having different threshold values due to the
induced positive charge in the oxide. By pcnrortmng C Vt'nis woer',ki p .ipI Notre Dame. measurements before exposure. 30 min afterward, and

ilater, it w,;i, possible to electncaily monitor the induced

Address fr repnnts: positive carge. The results of these expenments. along

G.H. Bermstcn with conciusions about the electrical behavior of the charge
Department ot Elemctnal Engineenne within the oxide, are reported. A model relaung the ex-
I *nverqI, ot Notre Dame posed capacitor area to the theoretical C-V results is pro-
Noire Dame. IN 46556. USA posed and compared with expenmental results.



I
3..46 Scanning 11. b 199-2I

The staung matenal used for MOS capacitor tabnca- I
tion was <100> orientation, p-type silicon with doping A- Cl
concentration N, = 1.5X 1015 cm I After caretul clean- "---TJ
ing, the silicon wafers were oxidized at 1000'C for 20 nun. i
resulung in oxide thicknesses ranging from 738-833 A. as
deduced from the accumulation capacitance of the mdt-
vidual C-V curves. In order to minimize the effects of mo- FiG. I •chematc diagram ot the parti area exposure ot a MOS
bile ion contamination, oxygen was bubbled through a capactaor iat Definiuon ot the exNosed area. At. and the unexposedsolution of 2% HCI in deionized water. Circular aluminum area A.. (b) The exposed and unexposed portions give a total capaci-

dots of an area 49X 10-3 cm2 were evaporated in a high tance. C, which is the sum of the two parallel capaciiances. C, andC,.
vacuum through a shadow mask onto the suiface of the
oxidized wafers. The thickness of the A] for all of the dots I
was 1.100 A as measured with an Alpha-step 200 pro-
filometer. The top surfaces of the metallized waters weie in a fixed positive charge contained in the oxide (Keery a
coated with a protective layer of positive photoresist. dhen al. 1976. Zainmger 1966. Zaininger an') Holmes-Siedle
immersed in a buffered hydrofluoric acid (HI) chemical 1967). The result of this trapped posituve charge is deple-

etching solution which removed the oxide from the back tion and inversion of the device at more negative voltages.
surtace. Following photoresist removal, aluminum was C-V measurements were performed on a senes of M(S I
evaporated onto the back surface of the waters, after which capacitors both before and 30 nun after partial area expo-
the wafers were annealed in flowing nitrogen gas for 20 sure in an SEM. as desribed above. Figure 2 shows ty. cal
min at 420'C. results obtained from two of these capacitors that have In c-

Partial areas of the completed MOS capacitors were tional exposure areas. ArAt, where A, is the exposed area I
subjected to electron beam exposure as shown schemau- and A, is the total area, of 10.4 % and 62.4%. respectively.
cally in Figure Ia. changing the device properues where The relevant teatures in this figure are the additional steps1
exposed and thus effectively dividing the device into two in die C-V curves observed after exposure. Comparison of
separate capacitors in parallel, as described in Figure I b. Figures 2a and 2b shows that the step height increases for
Exposures were performed at 20 kV and 0.8 nanoamperes larger fractional area exposure but the location of the step is
in an Amray model 1400 scanning electron mucroscope. approximately the same for constant areal dose.
The SEM was controlled using a Pragmatic Instruments We demonstrate below that our observed steps are due I
model 2201 A arbitrary waveform generator and custom to trapped positive charge in the exposed area, which caus-
software to ensure dose and area accuracy. Exposures wtre es that area to deplete ind invert at more negative voltages
executed by quickly imaging a single capacitor at a very than the unexposed portion of the capacitors. Although I
low current. blanking the beam, setting the current to the steps have been previously reported ir C.-V data after elec-
desired value, and scanning (using e-beam lithography) a tron beam irradiation, they were ot different ongin. In a
square of known area entirely within the MOS capacitor. study of Zagninger ( 1967). steps were obs."rved after total
The dose was fixed a. 4 x 10- 5 C/cma. and exposed areas capacitor exposure and were attributed to the enhancement I
ranged from 10.4-62.4% of the total area of the capacitor. of existing interface states concentrated around a single
The upper linmt on areal exposures was determined by the energy level in the band gap. When the degree of pertec-
size of the largest possible inscribed square within a circle tion of the interface was high, no step was observed, but I
(with area ratio 2/7t). the entire C-V curve was shifted to more negative volt-

ages. In order to test whether our step.. were due to such a
surface state phenomenon, we pertormed whole area expo-

Results and Analysis sures of our capacitors. The results ot our tcst ame shown in
Figure 3. The shift of the C-V characteristics with no step

Total electron beam exposure of high quality MOS present indicates that our steps in the partial exposure
devices is known to c, .,-e a negative shift of C-V charac- experiments are not related to the enhancement of pre-
tenstics (ohnson 1975. Keery et al. 1976. McLean et al. existing interlace states but are a result of the localiz~el
1989. Nicollian and Brews 1982. Sah et al. 1983. Shimaya positive charge created in the exposed area.
et al. 1983). Free electrons created in the oxide during ex- We now develop a quantitative model, which relates the I
posure either recombine with holes or leave the insulator; size of the observed steps to the areas of exposures. a.ssum-
thus they are electrically eliminated (Keery et al. 1976. ing that the created positive charge is fixed where created.
7aininger and Holmes-Siedle 1967). Holes. however, be- A single capacitor subjected to partial area exposure can be1
have differently because of their much lower mobility in modeled as two capacitors connected in parallel: one
SiO,. as some will recombine with electrons, while a sig- capacitor. C,. with an area equal to that of the exposed
nificant fraction is captured in stationary traps, resulting area. and another. Cu. with an area equal to that of the un-
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i:v,. 2 C-V crinracter,stics ot MOS capacitors before and aiver c-beam partial area exposure The exposure arcas vere i a) 10.4" and (b)

•2. 4c- or ihe otal a,.ca.

exposed area; Since the exposed area has a more negative sider the fbllowing reltuons as derived from basic MOS C-
threshold vcltage. V,.. because of the presence of the pos- V theory (Pierret 1983). The accumulation capacitance of

roive charge in die oxide. it undergoes depleuon and Inver- (lie exposed area is given by,mion. while the unexposed area is still in accumulation. The

unexposed area invens at the unchanged threshold volt- C %e.
age. Vu. Figure 4 shows schematically a C-V curve, which do_
is a superposition of the individual C-V curves for the
capacitors C, and C. IThe additional step observed in the where a, is the dielectric constant ot SiOm. o is the vacu-
expenmcnts is expewced to occui at the tlueshold voltage of urn pemi, ar da is the oi thikess. arlyi
jhe exposed area. The height of the step should be equal to ihersionductorecexcre ane os a
the difference betweeui the accumulation capacitance, Cc. inversin ,an be expressed as:
and the inversion capacitance. C,•, of the exposed area.

To determine the theoretical relationship betwesen the Ce_ K,"estep height. C.,, - C,,_. ind the expoosed area. A,. 'A-t con- W (2)

28 --- .- p , - Ca acitance

4 q9efore exposure2 4 0 
C at C oe. 

.
C = C . C lu

200I ' ,@
": Gnu -C..,

40
SV., Vt. Voltage

.. ,, iHG. 4 Schematic diagram of the C-V curve resulting from pa-tiai
-25 - 2) - 15 -10 -5 0 5 10 ;,rea exposure Key- C = capacitance. wirh subsc•p'ts a = accumula.

Voltage :son. I= :rte. c = exposed. u i unexposed i and I - iversion. V.ajnd

H-o, 3 C-V charactentcm ei a 0,M0S capacitor bcto:c and 30 mm V., are Mnteshuld ,oltages or expo "d and unexposed polmons, e-
alter iota; e-beam area exposure. spectively.
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.0here s, i the dielecmc constant ol \ih[cotn and \V :, Te maxxi- , 5 "

-um djenieuon-!ayer %k idth nto the ,emiconuuctor I •:jDavc- Theoreticai for averaoe a., - U
.lance of the exposed area in in\ersion cani fr'.o\tk r< CXiresd . Theoreticai for measured ]. .

.L", the 'enes combinauon ot the aboe ,\o M.apaciltance,.: Ex.enmentai data7

C: CC,- .j'-

cc=

The total accumulation capacitance is: 0.2

cat= d,.,. i41

d.., 0..2 03 .5 0 :,%here A, is the total capacitor area. Thus. combining all
,)I the inove equations. we obtain a linear relationship be-
tween me step height and the exposed area: 0.00.0 0.1 ' ' .' 0 0.7

C'. - C A.

K, .A. Fic Plot or theoretical ana experimental results relating the ex-
rosure area to the reullinC ,ten in ine C -V .haractensiics. The

.A. tero , rn%,es •.ith error r-ars indicate epenmentai data. -Fie tilied circle,

:enresent the predictions tr our theorcti. ai model using the a.'ual
K = ...i o..,xide th '.ckness for each c ai,,e. The olid iine Nhow~s the linear reia-

d.A - onsh.p oi Eq hnSt or eth cerage o•ide tlickness ot li = e66r A

Figure 5 compares the experimental data. obtained 30 change over ihe 4-week period. implying that no measur-
;nin atter exposure. and the theoretical predictions trom e
Eq. 15i Sho vn t, a plot of the normalized step height. C:,- Eible di ousi gn o t charge has taken place.

C er u ed.Even though the charge did not spread out. its magni-Cerror ars n the expermental data represent uncertaa nty in tude decreased over time. The amount of charge dissipa-
herrorbar-, i on the steps. For each d dat r dual capacitor lion can be determined from simple MOS theory. The shiftfithe a crain exposed area. s, e also show the theorencal i the threshold voltage ol the exposed area. _%V. is reiat

cd to a change in the oxide charge. AQ,,. by:
prediction trom Eq. (5) for the step height. taking into ac-
I outr the precise \ aiue of the oxide th:ckness tor the calcu- Q
'.ltion it the constant. K. The ,trawht line 'iiow.n :n the A C.) -b,

; ic.ure represents the relationship of Eq. 5 4 for a \ alue of
K corresponding to an average oxide thickness ot 766 A.

Figure 5 ives excellent agreement between out exper- I
im ental results and the above theoretical model, which 280_17 -_1
issutnes that the positive charge remains tixed !ti the area 280 r-,
01here it is created. The step height in the C-V daia may 240

thus be ued as a ineasure for !he areal extent of positire 2.......
charges rn imulatorr-. In paryttul,•ir the aut-.tilf.•im. o wi pos- 200 L
,ri'.' iu.wt.e (hchrLes may be ino'itorea us a chank'e o] tie -.

srep hethit in time.
To Lain further insight into the time-dependence ot the Q1

positi\ e oxide charge. we pertormed an expenment to de- n

termine its position and magnitude a -,ignificant time alter C, 120

its creation. We analyzed the C V data 90 inmo, ' v,,eeks. " " Before exI.SUre
aind -1 \.eeks alter partial area exposure or an NIOS capac- 80 After ex~osure

1.0.. lOMinM.
itor. A here the exposed area .% as 41.6% (i the total aica. 2 W"ek.
The chip ccntaining this capacitor was stored at room tem- 40 4 Weeks
perature !n a dark shielded hbx duinng the 4-w-eek time
period. F:2ure 6 ,hows the before- and alter-exposure -25 -20 -15 -10 -5 0 5 10
,:urses. We see that the step observed 30 min alter cxpo- ý,taae I
,ure has moved approximately (0.8 .olts in the positive t::,;. r) CAV characteusi•, of a N19Sapacitor neorc exposure and

direction alter 2 weeks, but only -.2 ,oils more alter an 30 nun. 2 wseeks., and4 eeK.Sailtei 41.01vt ot the total area was ex-
additional 2 weeks. Note that the step height did not posed with an electron beam. 3

I I-
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The shift in the threshold voltage ot - 14.5 vnlts 30 mm imaging ote but rather by the electrical shielding of the
alter the exposure corresponds to an induced charge den- *ite by a ground plate.
sitv ot 5.8x 10-- C/cm. After 2 %keeks. the charge rs re-
duced by only about 6% to 6.4x 10- C/cm2 . After an ad-
ditional 2 weeks, the charge is further reduced a mere Acknowledgments
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